如圖,已知AB是半圓O的直徑,∠BAC=32°,D是數(shù)學公式的中點,那么∠DAC的度數(shù)是


  1. A.
    25°
  2. B.
    29°
  3. C.
    30°
  4. D.
    32°
B
分析:連接BC,根據(jù)圓周角定理及等邊對等角求解即可.
解答:解:連接BC.
∵AB是半圓O的直徑,∠BAC=32°
∴∠ACB=90°,∠B=90°-32°=58°
∴∠D=180°-∠B=122°
∵D是的中點
∴∠DAC=∠DCA=(180°-∠D)÷2=29°.
故選B.
點評:本題利用了圓內接四邊形的性質,直徑對的圓周角是直角求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知AB是半圓O的直徑,弦AD、BC相交于點P,若∠DPB=α,那么CD:AB等于( 。
A、sinα
B、cosα
C、tanα
D、
1
tanα

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知AB是半圓O的直徑,∠BAC=32°,D是
AC
的中點,那么∠DAC的度數(shù)是(  )
A、25°B、29°
C、30°D、32°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是半圓的直徑,∠BAC=20°,D是
AC
上任意一點,則∠D的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•葫蘆島一模)如圖,已知AB是半圓O的直徑,AB=10,點P是半圓周上一點,連接AP、BP,并延長BP至點C,使CP=BP,過點C作CE⊥AB,點E為垂足,CE交AP于點F,連接OF.
(1)當∠BAP=30°時,求
BP
的長度;
(2)當CE=8時,求線段EF的長;
(3)在點P運動過程中,點E隨之運動到點A、O之間時,以點E、O、F為頂點的三角形與△BAP相似,請求出此時AE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是半圓O的直徑,∠DAC=27°,D是弧AC的中點,那么∠BAC的度數(shù)是(  )

查看答案和解析>>

同步練習冊答案