觀(guān)察下列各式
1+
1
3
=2
1
3
,
2+
1
4
=3
1
4
,
3+
1
5
=4
1
5
…①猜想5
1
6
=
 
 
=15
1
16
.②試猜想第n個(gè)等式為
 
分析:觀(guān)察規(guī)律發(fā)現(xiàn),被開(kāi)方數(shù)中的整數(shù)部分加1放在根號(hào)外,分?jǐn)?shù)部分放在根號(hào)內(nèi)即可.
解答:解:∵
1+
1
3
=2
1
3
,
2+
1
4
=3
1
4
,
3+
1
5
=4
1
5

∴①猜想5
1
6
=
4+
1
6

14+
1
16
=15
1
16
;
②試猜想第n個(gè)等式
n+
1
n+2
=(n+1)
1
n+2

故答案為:①
4+
1
6
14+
1
16
,②
n+
1
n+2
=(n+1)
1
n+2
點(diǎn)評(píng):本題利用算術(shù)平方根的概念考查了數(shù)字規(guī)律的變化問(wèn)題,觀(guān)察出被開(kāi)方數(shù)的整數(shù)部分與分?jǐn)?shù)部分的變化是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀(guān)察下列各式:
1
3
-
1
5
=
2
15
=
2
3×5
,
1
5
-
1
7
=
2
35
=
2
5×7
,…,
1
n
-
1
n+2
=
2
n(n+2)
.根據(jù)上式所反映出來(lái)的規(guī)律,請(qǐng)你計(jì)算:
1
1×3
+
1
3×5
+
1
5×7
+
+
1
n(n+2)
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

30、觀(guān)察下列各式:13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2
(1)用含自然數(shù)n的等式表示上述各式的規(guī)律;
(2)利用你的結(jié)論計(jì)算:203+213+223+…+303

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀(guān)察下列各式:
13+23=9=
1
4
×4×9=
1
4
×22×32

13+23+33=36=
1
4
×9×16=
1
4
×32×42

13+23+33+43=100=
1
4
×16×25=
1
4
×42×52


(1)計(jì)算:13+23+33+43+…+103的值;
(2)試猜想13+23+33+43+…+n3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀(guān)察下列各式:
13+23=
1
4
×4×9=
1
4
×22×32
;
13+23+33=36=
1
4
×9×16=
1
4
×32×42

13+23+33+43=100=
1
4
×16×25=
1
4
×42×52
;
(1)計(jì)算:13+23+33+43+53的值;
(2)計(jì)算:13+23+33+43+…+103的值;
(3)猜想:13+23+33+43+…+n3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀(guān)察下列各式:
13=12,13+23=32,13+23+33=62,13+23+33+43=102
(1)求:13+23+33+…+103的值.
(2)若13+23+33+…+20093=a2,試求a的值.
(3)根據(jù)觀(guān)察,你發(fā)現(xiàn)了什么規(guī)律?

查看答案和解析>>

同步練習(xí)冊(cè)答案