【題目】已知輪船在靜水中航行的速度是m千米/時(shí),水流的速度是a千米/時(shí).
(1)輪船順?biāo)叫械乃俣葹?/span> km/h,輪船逆流航行的速度為 km/h.
(2)若輪船順?biāo)叫?/span>3小時(shí),逆水航行2小時(shí),則輪船共航行多少千米?
(3)當(dāng)m=80,a=3時(shí),則輪船共航行多少千米?
【答案】(1),;(2)千米;(3)403千米.
【解析】
(1)順?biāo)叫兴俣?/span>=靜水航行速度+水流速度,逆流航行速度=靜水航行速度-水流速度;
(2)分別表示出順?biāo)叫新烦毯湍嫠叫新烦,兩者相加即可?/span>
(3)將m=80,a=3代入(2)中的式子求值即可.
解:(1)輪船順?biāo)叫械乃俣?/span>=靜水航行速度+水流速度=千米/時(shí),
逆流航行速度=靜水航行速度-水流速度=千米/時(shí),
故答案為:,.
(2)順?biāo)叫?/span>3小時(shí)路程=,逆水航行2小時(shí)路程=
所以輪船共航行千米.
答:輪船共航行千米.
(3)當(dāng)m=80,a=3時(shí),
千米
答:輪船共航行403千米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的對角線交于O點(diǎn),點(diǎn)E,F分別是AO,CO的中點(diǎn),連接BE,BF,DE,DF,則下列結(jié)論中一定成立的是________.(把所有正確結(jié)論的序號都填在橫線上)
①BF=DE;②∠ABO=2∠ABE;③S△AED=S△ACD;④四邊形BFDE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對角線BD上一點(diǎn),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF.給出下列五個(gè)結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正確結(jié)論的序號是( 。
A. ①②③④B. ①②④⑤C. ②③④⑤D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠AOB=,∠AOC=,OE是∠AOB內(nèi)部的一條射線,且OF平分∠AOE.
(1)若∠EOB=,求∠COF的度數(shù);
(2)若∠COF=,求∠EOB的度數(shù)(用含n的式子表示);
(3)當(dāng)射線OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖2的位置時(shí),請把圖補(bǔ)充完整;此時(shí),∠COF與∠EOB有怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年,隨著釣魚島事件、南海危機(jī)、薩德入韓等一系列事件的發(fā)生,我們國家安全一再受到威脅,所謂“國家興亡,匹夫有責(zé)”,某校積極開展國防知識教育,九年級甲、乙兩班分別選5名同學(xué)參加“國防知識”比賽,其預(yù)賽成績?nèi)鐖D所示:
(1)根據(jù)上圖填寫下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 |
| 8.5 |
|
|
乙班 | 8.5 |
| 10 | 1.6 |
(2)根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度對甲乙兩班進(jìn)行分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)與反比例函數(shù).
(1)證明:直線與雙曲線沒有交點(diǎn);
(2)若將直線向上平移4個(gè)單位后與雙曲線恰好有且只有一個(gè)交點(diǎn),求反比例函數(shù)的表達(dá)式和平移后的直線表達(dá)式;
(3)將(2)小題平移后的直線代表的函數(shù)記為,根據(jù)圖象直接寫出:對于負(fù)實(shí)數(shù),當(dāng)取何值時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將四張邊長各不相同的正方形紙片按如圖方式放入矩形ABCD內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示,設(shè)右上角與左下角陰影部分的周長的差為l.若知道l的值,則不需要測量就能知道周長的正方形的標(biāo)號為( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個(gè)底面為長方形(長為a厘米,寬為b厘米)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是( )
A. 4a厘米B. 4b厘米C. 2(a+b)厘米D. 4(a-b)厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,∠ABD=90°,延長AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:四邊形BECD是矩形;
(2)連接DE交BC于點(diǎn)F,連接AF,若CE=2,∠DAB=30°,求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com