【題目】已知ABC中,∠B50°,∠C70°,ADABC的角平分線,DEABE點.

1)求∠EDA的度數(shù);

2AB10AC8DE3,求SABC

【答案】160°;(227.

【解析】

1)先求出∠BAC 60°,再用ADABC的角平分線求出∠BAD再根據(jù)垂直,即可求解;

2)過DDFACF三角形ABC的面積為三角形ABD和三角形ACD的和即可求解.

解:(1)∵∠B50°,∠C70°

∴∠BAC180°﹣∠B﹣∠C180°50°70°60°,

ADABC的角平分線,

∴∠BADBAC×60°30°,

DEAB,

∴∠DEA90°,

∴∠EDA180°﹣∠BAD﹣∠DEA180°30°90°60°

2)如圖,過DDFACF,

ADABC的角平分線,DEAB,

DFDE3

又∵AB10,AC8,

SABC×AB×DE×AC×DF×10×3×8×327

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為△ABC的內(nèi)心,延長AP交△ABC的外接圓于D,在AC延長線上有一點E,滿足AD2=ABAE.
求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在數(shù)軸上A,B兩點對應(yīng)的數(shù)分別是6,-6,∠DCE=90°CO重合,D點在數(shù)軸的正半軸上)

1)如圖1,若CF平分∠ACE,則∠AOF=_______

2)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t0t3)個單位后,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α

①當(dāng)t=1時,α=_______

②猜想∠BCEα的數(shù)量關(guān)系,并證明;

3)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸的正半軸向右平移t0t3)個單位,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α,與此同時,將∠D1C1E1沿數(shù)軸的負(fù)半軸向左平移t0t3)個單位,再繞點頂點C1順時針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1,若αβ滿足|α-β|=40°,請直接寫出t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知、的交點為,現(xiàn)作如下操作:

第一次操作,分別作的平分線,交點為

第二次操作,分別作的平分線,交點為,

第三次操作,分別作的平分線,交點為,

次操作,分別作的平分線,交點為

度,那等于__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將方格紙中的△ABC向上平移4個單位長度,然后向右平移6個單位長度,得到△A1B1C1

(1)畫出平移后的圖形;

(2)線段AA1,BB1的位置關(guān)系是______;數(shù)量關(guān)系是________.

(3)如果每個方格的邊長是1,那么△ABC的面積是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y= 的圖象在第一象限交于點A(4,3),與y軸的負(fù)半軸交于點B,且OA=OB.

(1)求函數(shù)y=kx+b和y= 的表達(dá)式;
(2)已知點C(0,5),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的點,∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P( +1, ﹣1)在雙曲線y= (x>0)上.

(1)求k的值;
(2)若正方形ABCD的頂點C,D在雙曲線y= (x>0)上,頂點A,B分別在x軸和y軸的正半軸上,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,tan∠ABC= ,P為AB上一點,以PB為邊向外作菱形PMNB,連結(jié)DM,取DM中點E,連結(jié)AE,PE,則 的值為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案