【題目】如圖,菱形ABCD中,∠B=120°,AB=2,將圖中的菱形ABCD繞點A沿逆時針方向旋轉,得菱形AB′C′D′,若∠BAD′=110°,在旋轉的過程中,點C經過的路線長為
【答案】
【解析】解:連接AC、AC′,作BM⊥AC于M,如圖所示:∵四邊形ABCD是菱形,∠B=120°,
∴∠BAC=∠D′AC′=30°,
∴BM= AB=1,
∴AM= BM= ,
∴AC=2AM=2 ,
∵∠BAD′=110°,
∴∠CAC′=110°﹣30°﹣30°=50°,
∴點C經過的路線長= = π;
所以答案是: .
【考點精析】解答此題的關鍵在于理解菱形的性質的相關知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半,以及對旋轉的性質的理解,了解①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩村在一條小河的同一側,要在河邊建一水廠向兩村供水.
⑴.若要使自來水廠到兩村的距離相等,廠址P應選在哪個位置?
⑵.若要使自來水廠到兩村的輸水管用料最省,廠址Q應選在哪個位置?請將上述兩種情況下的自來水廠廠址標出,并保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是正方形,△ABC的頂點均在格點上,建立平面直角坐標系.
(1)以原點O為對稱中心,畫出與△ABC關于原點O對稱的△A1B1C1 , A1的坐標是
(2)將原來的△ABC繞著點(﹣2,1)順時針旋轉90°得到△A2B2C2 , 試在圖上畫出△A2B2C2的圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設點M運動的時間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A,B兩點,與y軸相交于點C(0,3),點B坐標是(3,0),設拋物線的頂點為點D.
(1)求此拋物線的解析式與對稱軸;
(2)作直線BC,與拋物線的對稱軸交于點E,點P為直線BC上方的二次函數(shù)上一個動點(且點P與點B,C不重合),過點P作PF∥DE交直線BC于點F,設點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PDEF為平行四邊形?
②設△PBC的面積為S,求S與m的函數(shù)關系式.S是否存在最大值?若存在,求出最大值并求出此時P點坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①兔子和烏龜同時從起點出發(fā);
②“龜兔再次賽跑”的路程為1000米;
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法共有____________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
①以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1;
②將△ABC繞A點逆時針旋轉90°得到△AB2C2 , 畫出△AB2C2 , 并求出AC掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com