【題目】一組數(shù)據(jù)7,2,5,4,2的方差為a,若再增加一個數(shù)據(jù)4,這6個數(shù)據(jù)的方差為b,則ab的大小關(guān)系是(  )

A. a>b B. a=b C. a<b D. 以上都有可能

【答案】A

【解析】分析:根據(jù)平均數(shù)的計算公式先計算出各組數(shù)據(jù)的平均數(shù),再根據(jù)方差公式求出各組數(shù)據(jù)的方差,然后進行比較即可.

詳解:數(shù)據(jù)7,2,5,4,2的平均數(shù)是:(7+2+5+4+2)=4,

方差:a= [(7-4)2+(2-4)2+(5-4)2+(4-4)2+(2-4)2]=3.6;

數(shù)據(jù)7,2,5,4,2,4的平均數(shù)是:(7+2+5+4+2+4)=4,

方差:b= [(7-4)2+(2-4)2+(5-4)2+(4-4)2+(2-4)2+(4-4)2]=3,

a>b;

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①在直角三角形ABC中,已知兩邊長為34,則第三邊長為5;

②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;

③△ABC中,若∠A:B:C=1:5:6,則ABC是直角三角形;

④△ABC中,若 a:b:c=1:2:,則這個三角形是直角三角形.

其中,正確命題的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACAD⊥BC,CE⊥AB,AE=CE.求證:

1△AEF≌△CEB

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B均在邊長為1的正方形網(wǎng)格格點上.

(1)求線段AB所在直線的函數(shù)解析式,并寫出當(dāng)0≤y≤2時,自變量x的取值范圍;
(2)將線段AB繞點B逆時針旋轉(zhuǎn)90°,得到線段BC,請在答題卡指定位置畫出線段BC.若直線BC的函數(shù)解析式為y=kx+b,則y隨x的增大而(填“增大”或“減小”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是AD上一點,延長CE到點F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點P(1,5)在函數(shù)x>0)的圖象上,過點P分別作x軸、y軸的垂線,垂足為點AB;Qm,n為圖象上另一動點,過點Q分別作x軸、y軸的垂線,垂足為點C、D.隨著m的增大,四邊形OCQD四邊形OAPB不重疊部分的面積

A. 先增大后減小 B. 先減小后增大

C. 先減小后增大再減小 D. 先增大后減小再增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃在“十周年”慶典當(dāng)天開展購物抽獎活動,凡當(dāng)天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個扇形,分別標上1,2,3,4四個數(shù)字,抽獎?wù)哌B續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,當(dāng)每次轉(zhuǎn)盤停止后指針所指扇形內(nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時,返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時,返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時返現(xiàn)金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎,能獲得返還現(xiàn)金的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰三角形ABO的底邊OA在x軸上,頂點B在反比例函數(shù)y= (x>0)的圖象上,當(dāng)?shù)走匫A上的點A在x軸的正半軸上自左向右移動時,頂點B也隨之在反比例函數(shù)y= (x>0)的圖象上滑動,但點O始終位于原點.

(1)如圖①,若點A的坐標為(6,0),求點B的坐標;
(2)當(dāng)點A移動到什么位置時,三角形ABO變成等腰直角三角形,請說明理由;
(3)在(2)中,如圖②,△PA1A是等腰直角三角形,點P在反比例函數(shù)y= (x>0)的圖象上,斜邊A1A在x軸上,求點A1的坐標.

查看答案和解析>>

同步練習(xí)冊答案