【題目】四邊形ABCD中,∠A=140°,∠D=80度.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖3,若∠ABC和∠BCD的角平分線交于點(diǎn)E,試求出∠BEC的度數(shù).
【答案】
(1)解:因?yàn)椤螦+∠B+∠C+∠D=360,∠B=∠C,
所以∠B=∠C=
(2)解:∵BE∥AD,
∴∠BEC=∠D=80°,
∠ABE=180°﹣∠A=180°﹣140°=40°.
又∵BE平分∠ABC,
∴∠EBC=∠ABE=40°,
∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣40°﹣80°=60°.
或解:∵BE∥AD,
∴∠ABE=180°﹣∠A=180°﹣140°=40°,
又∵BE平分∠ABC,
∴∠ABC=2∠ABE=80°,
∴∠C=360°﹣∠ABC﹣∠A﹣∠D=60°
(3)解:∵∠A+∠ABC+∠BCD+∠D=360°,
∴∠ABC+∠BCD=360°﹣∠A﹣∠D=360°﹣140°﹣80°=140°.
∵∠EBC= ∠ABC,∠BCE= ∠BCD,
∴∠E=180﹣∠EBC﹣∠BCE=180°﹣ (∠ABC+∠BCD)=180°﹣ ×140°=110°
【解析】(1)根據(jù)四邊形的內(nèi)角和是360°,結(jié)合已知條件就可求解;(2)根據(jù)平行線的性質(zhì)得到∠ABE的度數(shù),再根據(jù)角平分線的定義得到∠ABC的度數(shù),進(jìn)一步根據(jù)四邊形的內(nèi)角和定理進(jìn)行求解;(3)根據(jù)四邊形的內(nèi)角和定理以及角平分線的概念求得∠EBC+∠ECB的度數(shù),再進(jìn)一步求得∠BEC的度數(shù).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解多邊形內(nèi)角與外角的相關(guān)知識(shí),掌握多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意解答
(1)一個(gè)角的余角與這個(gè)角的補(bǔ)角的和比平角的 多1°,求這個(gè)角的度數(shù).
(2)已知5m=2,5n=3,求53m﹣2n .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果用﹣10%表示某商品的出口額比上一年減少10%,那么+12%則表示該商品的出口額比上一年( )
A.減少12%
B.增加12%
C.減少22%
D.增加2%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)手操作: 如圖①是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中的虛線剪開(kāi)分成四個(gè)大小相等的長(zhǎng)方形,然后按照?qǐng)D②所示拼成一個(gè)正方形.
提出問(wèn)題:
(1)觀察圖②,請(qǐng)用兩種不同的方法表示陰影部分的面積;
(2)請(qǐng)寫(xiě)出三個(gè)代數(shù)式(a+b)2 , (a﹣b)2 , ab之間的一個(gè)等量關(guān)系. 問(wèn)題解決:
根據(jù)上述(2)中得到的等量關(guān)系,解決下列問(wèn)題:
已知:x+y=6,xy=3.求:(x﹣y)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面坐標(biāo)系中,點(diǎn)P(3,4)是線段AB上一點(diǎn),以原點(diǎn)為位似中心把△AOB擴(kuò)大到原來(lái)的2倍,則點(diǎn)P對(duì)應(yīng)的點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com