6、觀察二次函數(shù)y=ax2+bx(a≠0)的圖象(如圖),則直線y=ax+b一定經(jīng)過( 。
分析:根據(jù)二次函數(shù)的圖象,可得a、b的關(guān)系,代入一次函數(shù)中,分析可得答案.
解答:解:根據(jù)二次函數(shù)的圖象,
可得a<0,b<0;
則y=ax+b中,亦有a<0,b<0;
故直線y=ax+b一定經(jīng)過第二、三、四象限.
故選D.
點(diǎn)評:此題主要考查了二次函數(shù)與一次函數(shù)的圖象與系數(shù)的關(guān)系,要掌握它們的性質(zhì)才能靈活解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)問題情境

已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?

數(shù)學(xué)模型

設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為                       

探索研究

⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).

①填寫下表,畫出函數(shù)的圖象:

x

……

1

2

3

4

……

y

……

 

 

 

 

 

 

 

……

 

 

 

2

 
②觀察圖象,試描述該函數(shù)的增減性(y隨x變化發(fā)生什么變化);

③在求二次函數(shù)y=ax+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過

配方得到.請你通過配方求函數(shù)(x>0)的最小值.

解決問題

⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)問題情境


已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為                       
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).
①填寫下表,畫出函數(shù)的圖象:
x
……



1
2
3
4
……
y
……
 
 
 
 
 
 
 
……
 

2

 
②觀察圖象,試描述該函數(shù)的增減性(y隨x變化發(fā)生什么變化);

③在求二次函數(shù)y=ax+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過
配方得到.請你通過配方求函數(shù)(x>0)的最小值.
解決問題
⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省衢州華外九年級上學(xué)期第二次質(zhì)量檢測數(shù)學(xué)卷 題型:解答題

(本題10分)問題情境


已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最。孔钚≈凳嵌嗌?
數(shù)學(xué)模型
設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為                       
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).
①填寫下表,畫出函數(shù)的圖象:

x
……



1
2
3
4
……
y
……
 
 
 
 
 
 
 
……
 

2

 
②觀察圖象,試描述該函數(shù)的增減性(y隨x變化發(fā)生什么變化);

③在求二次函數(shù)y=ax+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過
配方得到.請你通過配方求函數(shù)(x>0)的最小值.
解決問題
⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省衢州華外九年級上學(xué)期第二次質(zhì)量檢測數(shù)學(xué)卷 題型:解答題

(本題10分)問題情境

已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?

數(shù)學(xué)模型

設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為                       

探索研究

⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).

①填寫下表,畫出函數(shù)的圖象:

x

……

1

2

3

4

……

y

……

 

 

 

 

 

 

 

……

 

 

 

2

 
②觀察圖象,試描述該函數(shù)的增減性(y隨x變化發(fā)生什么變化);

③在求二次函數(shù)y=ax+bx+c(a≠0)的最大(小)值時,除了通過觀察圖象,還可以通過

配方得到.請你通過配方求函數(shù)(x>0)的最小值.

解決問題

⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

 

查看答案和解析>>

同步練習(xí)冊答案