在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).設(shè)坐標(biāo)軸的單位長度為1厘米,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1厘米/秒,且整點(diǎn)P作向上或向右運(yùn)動(dòng)(如圖所示).運(yùn)動(dòng)時(shí)間(秒)與整點(diǎn)(個(gè))的關(guān)系如下表:
整點(diǎn)P從原點(diǎn)O出發(fā)的時(shí)間(秒)可以得到的整點(diǎn)P的坐標(biāo)可以得到整點(diǎn)P的個(gè)數(shù)
1(0,1),(1,0)2
2(0,2),(1,1),(2,0)3
3(0,3),(1,2),(2,1),(3,0)4
根據(jù)上表中的規(guī)律,回答下列問題:
(1)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4秒時(shí),可以得到的整點(diǎn)P的個(gè)數(shù)為______個(gè);
(2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8秒時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連接這些整點(diǎn);
(3)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)______秒時(shí),可到達(dá)整點(diǎn)(16,4)的位置;
(4)當(dāng)整點(diǎn)P(x,y)從點(diǎn)O出發(fā)30秒時(shí),整點(diǎn)P(x,y)恰好在直線y=2x-6上,求整點(diǎn)P(x,y)的坐標(biāo).

解:(1)根據(jù)表中所示的規(guī)律,點(diǎn)的個(gè)數(shù)比時(shí)間數(shù)多1,可計(jì)算出整點(diǎn)P從O點(diǎn)出發(fā)4秒時(shí)整點(diǎn)P的個(gè)數(shù)為5;

(2)由表中所示規(guī)律可知,橫縱坐標(biāo)的和等于時(shí)間,則點(diǎn)的個(gè)數(shù)為(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).如圖:

(3)由表中規(guī)律可知,橫縱坐標(biāo)的和等于時(shí)間,可得,16+4=20秒;

(4)∵x+y=30,且整點(diǎn)P(x,y)恰好在直線y=2x-6上,
,
解得,
則P點(diǎn)坐標(biāo)為(12,18).
分析:(1)根據(jù)表中所示的規(guī)律,點(diǎn)的個(gè)數(shù)比時(shí)間數(shù)多1,可計(jì)算出整點(diǎn)P從O點(diǎn)出發(fā)4秒時(shí)整點(diǎn)P的個(gè)數(shù);
(2)由表中所示規(guī)律可知,橫縱坐標(biāo)的和等于時(shí)間,據(jù)此可得到整點(diǎn)P從點(diǎn)O出發(fā)8秒時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連接這些整點(diǎn);
(3)由表中規(guī)律可知,橫縱坐標(biāo)的和等于時(shí)間,可得,16+4=20秒;
(4)根據(jù)橫縱坐標(biāo)的和為30可知,x+y=30,與y=2x-6組成方程組即可解答.
點(diǎn)評:本題考查了圖形變化的規(guī)律,根據(jù)表中規(guī)律得到點(diǎn)的橫縱坐標(biāo)的和等于時(shí)間是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).且規(guī)定,正方形的內(nèi)部不包含邊界上的點(diǎn).觀察如圖所示的中心在原點(diǎn)、一邊平行于x軸的正方形:邊長為1的正方形內(nèi)部有1個(gè)整點(diǎn),邊長為3的正方形內(nèi)部有9個(gè)整點(diǎn),…,則邊長為8的正方形內(nèi)部整點(diǎn)個(gè)數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2005•遵義)在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).設(shè)坐標(biāo)軸的單位長度為1厘米,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1厘米/秒,且整點(diǎn)P作向上或向右運(yùn)動(dòng)(如圖所示).運(yùn)動(dòng)時(shí)間(秒)與整點(diǎn)(個(gè))的關(guān)系如下表:
整點(diǎn)P從原點(diǎn)O出發(fā)的時(shí)間(秒) 可以得到的整點(diǎn)P的坐標(biāo) 可以得到整點(diǎn)P的個(gè)數(shù)
1 (0,1),(1,0) 2
2 (0,2),(1,1),(2,0) 3
3 (0,3),(1,2),(2,1),(3,0) 4
根據(jù)上表中的規(guī)律,回答下列問題:
(1)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4秒時(shí),可以得到的整點(diǎn)P的個(gè)數(shù)為
5
5
個(gè);
(2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8秒時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連接這些整點(diǎn);
(3)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)
20
20
秒時(shí),可到達(dá)整點(diǎn)(16,4)的位置;
(4)當(dāng)整點(diǎn)P(x,y)從點(diǎn)O出發(fā)30秒時(shí),整點(diǎn)P(x,y)恰好在直線y=2x-6上,求整點(diǎn)P(x,y)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn),且規(guī)定:正方形內(nèi)部不包含邊界上的點(diǎn).觀察如圖所示的中心在原點(diǎn)、一邊平行于x軸的正方形:邊長為1的正方形內(nèi)部有1個(gè)整點(diǎn),邊長為2的正方形內(nèi)部有1個(gè)整點(diǎn),邊長為3的正方形內(nèi)部有9個(gè)整點(diǎn),…,則邊長為9的正方形內(nèi)的整點(diǎn)個(gè)數(shù)為( 。
A、64B、49C、36D、81

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省興化市四校八年級上學(xué)期第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫作整點(diǎn).設(shè)坐標(biāo)軸的單位長度為1cm,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1cm/s,且整點(diǎn)P作向上或向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間(s)與整點(diǎn)(個(gè))的關(guān)系如下表:

整點(diǎn)P從原點(diǎn)O出發(fā)

的時(shí)間(s)

可以得到整點(diǎn)P的坐標(biāo)

可以得到整點(diǎn)

P的個(gè)數(shù)

1

(0,1),(1,0)

2

2

(0,2),(1,1),(2,0)

3[來源:]

3

(0,3)(1,2)(2,1)(3,0)

4

根據(jù)上表中的規(guī)律,回答下列問題:

⑴當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4s時(shí)可得到的整點(diǎn)P有    個(gè);

⑵當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8s時(shí),在直角坐標(biāo)系中描出可以得到的整點(diǎn),并順次連接這些整點(diǎn);

⑶當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)      s時(shí),可以到達(dá)整點(diǎn)(16,4)的位置;

⑷當(dāng)整點(diǎn)P(x,y)從點(diǎn)O出發(fā)30s時(shí),當(dāng)整點(diǎn)P(x,y)恰好在直線y=2x-6上,求整點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年4月中考數(shù)學(xué)模擬試卷(16)(解析版) 題型:選擇題

在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).且規(guī)定,正方形的內(nèi)部不包含邊界上的點(diǎn).觀察如圖所示的中心在原點(diǎn)、一邊平行于x軸的正方形:邊長為1的正方形內(nèi)部有1個(gè)整點(diǎn),邊長為3的正方形內(nèi)部有9個(gè)整點(diǎn),…,則邊長為8的正方形內(nèi)部整點(diǎn)個(gè)數(shù)為( )

A.64
B.49
C.36
D.25

查看答案和解析>>

同步練習(xí)冊答案