【題目】定義:點(diǎn)Q到圖形W上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)Q到圖形W的距離.
例如,如圖1,正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點(diǎn)O(0,0)到正方形ABCD的距離為1.
(1)如果⊙P是以(3,4)為圓心,2為半徑的圓,那么點(diǎn)O(0,0)到⊙P的距離為 ;
(2)①求點(diǎn)M(3,0)到直線了y=x+4的距離:
②如果點(diǎn)N(0,a)到直線y=x+4的距離為2,求a的值;
(3)如果點(diǎn)G(0,b)到拋物線y=x2的距離為3,請(qǐng)直接寫(xiě)出b的值.
【答案】(1)3(2)①②或(3)﹣3或
【解析】
根據(jù)勾股定理可得點(diǎn)O(0,0)到 P的距離;
①過(guò)點(diǎn)M作M′M⊥l,垂足為點(diǎn)M′,由直角三角形的性質(zhì)可得M′M=MA sin∠M′AM=6×=,從而得到點(diǎn)M到直線的距離;
②分兩種情況:N在l的上邊;N在l的下邊;進(jìn)行討論先得到BN的長(zhǎng),進(jìn)一步即可得到a的值;
分兩種情況:①點(diǎn)G在原點(diǎn)下面;②點(diǎn)G在原點(diǎn)上面;進(jìn)行討論即可得到b的值.
(1)連接OP交圓于點(diǎn)Q,
由題意得:OQ為點(diǎn)O(0,0)到⊙P的距離,
點(diǎn)P(3,4)則OP=5,則PQ=5﹣2=3,
故答案是3;
(2)①如下圖所示,設(shè):直線為l的方程為:y=x+4,
直線與x軸、y軸交點(diǎn)的坐標(biāo)分別為(﹣3,0)、(0,4),tan∠M′AM=,
過(guò)點(diǎn)M作M′M⊥直線l,則M′M為M到直線l的距離,
M′M=MA sin∠M′AM=6×=,
②由題意得:當(dāng)N在直線l下方時(shí),
N′N=2,BN==,
則a=4﹣=,
當(dāng)N在直線l上方時(shí),a=則a=4+ =,
即a=或;
(3)當(dāng)G在原點(diǎn)下方時(shí),b=﹣3,
當(dāng)G在原點(diǎn)上方時(shí),,
整理得:x4+(1﹣2b)x2+b2﹣9=0,
△=(1﹣2b)2﹣4(b2﹣9)=0,
解得:b=,
故b=﹣3或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在矩形ABCD中.點(diǎn)O在邊AB上,∠AOC=∠BOD.求證:AO=OB.
(2)如圖,AB是的直徑,PA與相切于點(diǎn)A,OP與相交于點(diǎn)C,連接CB,∠OPA=40°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 :y=ax2 過(guò)點(diǎn)(2,2)
(1)直接寫(xiě)出拋物線的解析式;
(2)如圖,△ABC 的三個(gè)頂點(diǎn)都在拋物線 上,且邊 AC 所在的直線解析式為y=x+b,若 AC 邊上的中線 BD 平行于 y 軸,求的值;
(3)如圖,點(diǎn) P 的坐標(biāo)為(0,2),點(diǎn) Q 為拋物線上 上一動(dòng)點(diǎn),以 PQ 為直徑作⊙M,直線 y=t 與⊙M 相交于 H、K 兩點(diǎn)是否存在實(shí)數(shù) t,使得 HK 的長(zhǎng)度為定值?若存在,求出 HK 的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+3x+c經(jīng)過(guò)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)若點(diǎn)P在第一象限的拋物線上,且點(diǎn)P的橫坐標(biāo)為t,過(guò)點(diǎn)P向x軸作垂線交直線BC于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為m,求m與t之間的函數(shù)關(guān)系式,并求出m的最大值;
(3)在x軸上是否存在點(diǎn)E,使以點(diǎn)B,C,E為頂點(diǎn)的三角形為等腰三角形?如果存在,直接寫(xiě)出E點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明設(shè)計(jì)的“過(guò)三角形的一個(gè)頂點(diǎn)作該頂點(diǎn)對(duì)邊的平行線”的尺規(guī)作圖過(guò)程.
已知:如圖1,△ABC.
求作:直線AD,使AD∥BC.
作法:如圖2:
①分別以點(diǎn)A、C為圓心,以大于AC為半徑作弧,兩弧交于點(diǎn)E、F;
②作直線EF,交AC于點(diǎn)O;
③作射線BO,在射線BO上截取OD(B與D不重合),使得OD = OB;
④作直線AD.
∴ 直線AD就是所求作的平行線.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,完成下面的證明.
證明:連接CD.
∵OA =OC,OB=OD,
∴四邊形ABCD是平行四邊形(_______________________)(填推理依據(jù)).
∴AD∥BC(__________________________________)(填推理依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍是,下表是y與x的幾組對(duì)應(yīng)值.
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過(guò)程,請(qǐng)將其補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象.
(2)根據(jù)畫(huà)出的函數(shù)圖象,寫(xiě)出:
①時(shí),對(duì)應(yīng)的函數(shù)值y約為 (結(jié)果精確到0.01);
②該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購(gòu)買門(mén)票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購(gòu)買的門(mén)票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門(mén)票原定的票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對(duì)于個(gè)人購(gòu)票也采取優(yōu)惠措施,原定票價(jià)經(jīng)過(guò)連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分9分)
為了考察甲、乙兩種成熟期小麥的株高長(zhǎng)勢(shì)狀況,現(xiàn)從中各隨機(jī)抽取6株,并測(cè)得它們的株高(單位:cm)如下表所示:
甲 | 63 | 66 | 63 | 61 | 64 | 61 |
乙 | 63 | 65 | 60 | 63 | 64 | 63 |
(1)請(qǐng)分別計(jì)算表內(nèi)兩組數(shù)據(jù)的方差,并借此比較哪種小麥的株高長(zhǎng)勢(shì)比較整齊?
(2)現(xiàn)將進(jìn)行兩種小麥優(yōu)良品種雜交試驗(yàn),需從表內(nèi)的甲、乙兩種小麥中,各隨機(jī)抽取一株進(jìn)行配對(duì),以預(yù)估整體配對(duì)狀況.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求所抽取的兩株配對(duì)小麥株高恰好都等于各自平均株高的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)騎車從家到學(xué)校要經(jīng)過(guò)一段先上坡后下坡的路,在這段路上小強(qiáng)騎車的距離s(千米)與騎車的時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖中信息回答下列問(wèn)題:
(1)小強(qiáng)去學(xué)校時(shí)下坡路長(zhǎng) 千米;
(2)小強(qiáng)下坡的速度為 千米/分鐘;
(3)若小強(qiáng)回家時(shí)按原路返回,且上坡的速度不變,下坡的速度也不變,那么回家騎車走這段路的時(shí)間是 分鐘.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com