如圖,從臺(tái)階的下端點(diǎn)B到上端點(diǎn)A的直線距離為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:將所有的高相加作為新直角三角形的一條直角邊,將所有的寬相加作為新直角三角形的另一條直角邊,利用勾股定理求得直角三角形的斜邊即可求解.
解答:解:根據(jù)題意得:AC=2+8+2=12,BC=4+4+4=12,
根據(jù)勾股定理得:AB===12,
故選A.
點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是正確的構(gòu)造直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某旅游勝地欲開(kāi)發(fā)一座景觀山.從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線ABC由同一平面內(nèi)的兩段拋物線組成,其中AB所在的拋物線以A為頂點(diǎn)、開(kāi)口向下,BC所在的拋物線以C為頂點(diǎn)、開(kāi)口向上.以過(guò)山腳(點(diǎn)C)的水平線為x軸、過(guò)山頂(點(diǎn)A)的鉛垂線為y軸建立平面直角坐標(biāo)系如圖(單位:百米).已知AB所在拋物線的解析式為y=-
1
4
x2+8,BC所在拋物線的解析式為y=
1
4
(x-8)2,且已知B(m,4).
(1)設(shè)P(x,y)是山坡線AB上任意一點(diǎn),用y表示x,并求點(diǎn)B的坐標(biāo);
(2)從山頂開(kāi)始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階.這種臺(tái)階每級(jí)的高度為20厘米,長(zhǎng)度因坡度的大小而定,但不得小于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見(jiàn)圖).
①分別求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到厘米);
②這種臺(tái)階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點(diǎn)D)處恰好有一小塊平地,可以用來(lái)建造索道站.索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)E處,OE=1600(米).假設(shè)索道DE可近似地看成一段以E為頂點(diǎn)、開(kāi)口向上的拋物線,解析式為y=
1
28
(x-16)2精英家教網(wǎng)試求索道的最大懸空高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,從臺(tái)階的下端點(diǎn)B到上端點(diǎn)A的直線距離為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,從臺(tái)階的下端點(diǎn)B到上端點(diǎn)A的直線距離為( 。
A.12
2
B.10
3
C.6
5
D.8
5
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:單選題

如圖,從臺(tái)階的下端點(diǎn)B 到上端點(diǎn)A 的直線距離為
[     ]
A.  
B. 
C.  
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案