已知,圖23-3-18、圖23-3-19分別是6×6正方形網(wǎng)格上的兩個(gè)軸對(duì)稱圖形(陰影部分),其面積分別為S1、S2(網(wǎng)格中最小的正方形面積為一個(gè)平方單位),請(qǐng)觀察圖形并解答下列問(wèn)題.

    

圖23-3-18       圖23-3-19     圖23-3-20

(1)求S1∶S2的值.?

(2)請(qǐng)?jiān)趫D23-3-20的網(wǎng)格上畫(huà)出一個(gè)面積為8平方單位的中心對(duì)稱圖形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=-
23
(x+2)2+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,C點(diǎn)在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)在平面直角坐標(biāo)系內(nèi)畫(huà)出拋物線的大致圖象并標(biāo)明頂點(diǎn)坐標(biāo);
(3)連AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),過(guò)E作EF∥AC交BC于F,連CE,設(shè)AE=m,△CEF的面積為S,求S與m的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上說(shuō)明S是否存在最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知∠ABC=90°,△ABE是等邊三角形,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),連接AP,將線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接QE并延長(zhǎng)交射線BC于點(diǎn)F.
(1)如圖2,當(dāng)BP=BA時(shí),∠EBF=
 
°,猜想∠QFC=
 
°;
(2)如圖1,當(dāng)點(diǎn)P為射線BC上任意一點(diǎn)時(shí),猜想∠QFC的度數(shù),并加以證明;
(3)已知線段AB=2
3
,設(shè)BP=x,點(diǎn)Q到射線BC的距離為y,求精英家教網(wǎng)y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,已知直徑AD=2
3
,∠ADC=60°,∠ACB=45°,連接OB交AC于點(diǎn)E.
(1)求CE:AE的值;
(2)在CB的延長(zhǎng)線上取一點(diǎn)P,使PB=2BC,試判斷直線PA和⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)在(2)的情況下,求線段PA、PB與
AB
所圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)三角形中,如果一個(gè)角是另一個(gè)角的2倍,我們稱這種三角形為倍角三角形.如圖23-1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的對(duì)邊分別記為a,b,c,倍角三角形的三邊a,b,c有什么關(guān)系呢?讓我們一起來(lái)探索.


(圖23-1)   (圖23-2)   (圖23-3)     (圖23-4)

(1)我們先從特殊的倍角三角形入手研究。請(qǐng)你結(jié)合圖形填空:

三角形

角的已知量

圖23-2

∠A=2∠B=

圖23-3

∠A=2∠B=

(2)如圖23-4,對(duì)于一般的倍角△ABC,若∠CAB=2∠CBA ,∠CAB、∠CBA、∠C的對(duì)邊分別記為a,b,c,a,b,c,三邊有什么關(guān)系呢?請(qǐng)你作出猜測(cè),并結(jié)合圖23-4給出的輔助線提示加以證明.

(3)請(qǐng)你運(yùn)用(2)中的結(jié)論解決下列問(wèn)題:若一個(gè)倍角三角形的兩邊長(zhǎng)為5,6,求第三邊長(zhǎng). (直接寫(xiě)出結(jié)論即可)(原創(chuàng))

查看答案和解析>>

同步練習(xí)冊(cè)答案