【題目】為向明中學(xué)提供午餐的某送餐公司計(jì)劃每月最后一天推出學(xué)生“驚喜套餐”,現(xiàn)做出幾款套餐后打算每班邀請(qǐng)一位學(xué)生代表來(lái)品嘗.初三(6)班有44(學(xué)號(hào)從144號(hào)),班長(zhǎng)設(shè)計(jì)了一個(gè)推選本班代表的辦法:從一副撲克牌中選取了分別標(biāo)有數(shù)字12、3、4的四張牌.先抽取一張牌記下數(shù)字后,放回洗勻;再抽取一張牌記下數(shù)字,兩個(gè)數(shù)字依次組成學(xué)生代表的學(xué)號(hào).比如第一張抽到1,第二張抽到4,就是學(xué)號(hào)為14的這個(gè)同學(xué)作為本班代表.

1)如果小林的學(xué)號(hào)為23,請(qǐng)用列表法或畫(huà)出樹(shù)狀圖的方法,求出他被抽到的概率;

2)對(duì)初三(6)班的每位同學(xué)來(lái)說(shuō),班長(zhǎng)設(shè)計(jì)的辦法是否公平?請(qǐng)說(shuō)明理由.

【答案】1)小林被抽到的概率是;(2)不公平.理由見(jiàn)解析.

【解析】

1)列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式求解可得;
2)由110號(hào)沒(méi)有被抽到的可能性,即110號(hào)被抽到的概率為0,據(jù)此可作出判斷.

1)列表法如下:

第一張牌

第二張牌

1

2

3

4

1

11

21

31

41

2

12

22

32

42

3

13

23

33

43

4

14

24

34

44

共出現(xiàn)了16種等可能結(jié)果.

∵小林的學(xué)號(hào)為23,

∴小林被抽到的概率是

2)不公平.理由如下:

用這種方法,只能抽取上述16個(gè)同學(xué)的學(xué)號(hào),其概率為.還有28個(gè)同學(xué)的學(xué)號(hào)抽不到,是不可能事件,其概率為0.故對(duì)初三(6)班的每位同學(xué)來(lái)說(shuō),班長(zhǎng)設(shè)計(jì)的辦法不公平.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)軸交于點(diǎn),與軸交于點(diǎn),經(jīng)過(guò)、兩點(diǎn)的拋物線(xiàn)軸的另一交點(diǎn)

1)求該拋物線(xiàn)的函數(shù)表達(dá)式;

2是該拋物線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn),交于點(diǎn)軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

①求出四邊形的周長(zhǎng)的函數(shù)表達(dá)式,并求的最大值;

②當(dāng)為何值時(shí),四邊形是菱形;

③是否存在點(diǎn),使得以、、為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求出滿(mǎn)足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線(xiàn)y=﹣x2+bx+cy軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),試過(guò)點(diǎn)Px軸的垂線(xiàn)1,再過(guò)點(diǎn)A1的垂線(xiàn),垂足為Q,連接AP

(1)求拋物線(xiàn)的函數(shù)表達(dá)式和點(diǎn)C的坐標(biāo);

(2)若△AQP∽△AOC,求點(diǎn)P的橫坐標(biāo);

(3)如圖2,當(dāng)點(diǎn)P位于拋物線(xiàn)的對(duì)稱(chēng)軸的右側(cè)時(shí),若將△APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)Q′,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)Q′落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一個(gè)函數(shù),自變量xa時(shí),函數(shù)值y也等于a,我們稱(chēng)a為這個(gè)函數(shù)的不動(dòng)點(diǎn).如果二次函數(shù)yx2+2x+c有兩個(gè)相異的不動(dòng)點(diǎn)x1、x2,且x11x2,則c的取值范圍是( )

A. c<﹣3B. c<﹣2C. cD. c1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是( )

A.機(jī)場(chǎng)對(duì)乘客進(jìn)行安檢不能采用抽樣調(diào)查

B.一組數(shù)據(jù)10,11,12,98的平均數(shù)是10,方差是2

C.清明時(shí)節(jié)雨紛紛是隨機(jī)事件

D.一組數(shù)據(jù)6,5,3,5,4的眾數(shù)是5,中位數(shù)是3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4BC=6.在不改變矩形ABCD的形狀和大小的情況下,當(dāng)矩形的頂點(diǎn)Ax軸的正半軸上左右移動(dòng)時(shí),另一個(gè)頂點(diǎn)D始終在y軸的正半軸上隨之上下移動(dòng).

1)當(dāng)∠OAD=30°時(shí),求點(diǎn)C的坐標(biāo);

2)設(shè)AD的中點(diǎn)為M,連接OM、MC,若四邊形OMCD的面積為時(shí),求OA的長(zhǎng);

3)在點(diǎn)A移動(dòng)過(guò)程中是否存在某一位置,使點(diǎn)C到點(diǎn)O的距離有最大值?若存在,求此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題提出):有同樣大小正方形256個(gè),拼成如圖1所示的的一個(gè)大的正方形.請(qǐng)問(wèn)如果用一條直線(xiàn)穿過(guò)這個(gè)大正方形的話(huà),最多可以穿過(guò)多少個(gè)小正方形?

(問(wèn)題探究):我們先考慮以下簡(jiǎn)單的情況:一條直線(xiàn)穿越一個(gè)正方形的情況.(如圖2

從圖中我們可以看出,當(dāng)一條直線(xiàn)穿過(guò)一個(gè)小正方形時(shí),這條直線(xiàn)最多與正方形上、下、左、右四條邊中的兩個(gè)邊相交,所以當(dāng)一條直線(xiàn)穿過(guò)一個(gè)小正方形時(shí),這條直線(xiàn)會(huì)與其中某兩條邊產(chǎn)生兩個(gè)交點(diǎn),并且以?xún)蓚(gè)交點(diǎn)為頂點(diǎn)的線(xiàn)段會(huì)全部落在小正方形內(nèi).

這就啟發(fā)我們:為了求出直線(xiàn)最多穿過(guò)多少個(gè)小正方形,我們可以轉(zhuǎn)而去考慮當(dāng)直線(xiàn)穿越由小正方形拼成的大正方形時(shí)最多會(huì)產(chǎn)生多少個(gè)交點(diǎn).然后由交點(diǎn)數(shù)去確定有多少根小線(xiàn)段,進(jìn)而通過(guò)線(xiàn)段的根數(shù)確定下正方形的個(gè)數(shù).

再讓我們來(lái)考慮正方形的情況(如圖3):

為了讓直線(xiàn)穿越更多的小正方形,我們不妨假設(shè)直線(xiàn)右上方至左下方穿過(guò)一個(gè)的正方形,我們從兩個(gè)方向來(lái)分析直線(xiàn)穿過(guò)正方形的情況:從上下來(lái)看,這條直線(xiàn)由下至上最多可穿過(guò)上下平行的兩條線(xiàn)段;從左右來(lái)看,這條直線(xiàn)最多可穿過(guò)左右平行的四條線(xiàn)段;這樣直線(xiàn)最多可穿過(guò)的大正方形中的六條線(xiàn)段,從而直線(xiàn)上會(huì)產(chǎn)生6個(gè)交點(diǎn),這6個(gè)交點(diǎn)之間的5條線(xiàn)段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線(xiàn)最多能經(jīng)過(guò)5個(gè)小正方形.

(問(wèn)題解決):

1)有同樣大小的小正方形16個(gè),拼成如圖4所示的的一個(gè)大的正方形.如果用一條直線(xiàn)穿過(guò)這個(gè)大正方形的話(huà),最多可以穿過(guò)_________個(gè)小正方形.

2)有同樣大小的小正方形256個(gè),拼成的一個(gè)大的正方形.如果用一條直線(xiàn)穿過(guò)這個(gè)大正方形的話(huà),最多可以穿過(guò)___________個(gè)小正方形.

3)如果用一條直線(xiàn)穿過(guò)的大正方形的話(huà),最多可以穿過(guò)___________個(gè)小正方形.

(問(wèn)題拓展):

4)如果用一條直線(xiàn)穿過(guò)的大長(zhǎng)方形的話(huà)(如圖5),最多可以穿過(guò)個(gè)___________小正方形.

5)如果用一條直線(xiàn)穿過(guò)的大長(zhǎng)方形的話(huà)(如圖6),最多可以穿過(guò)___________個(gè)小正方形.

6)如果用一條直線(xiàn)穿過(guò)的大長(zhǎng)方形的話(huà),最多可以穿過(guò)________個(gè)小正方形.

(類(lèi)比探究):

由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個(gè)面,類(lèi)比上面問(wèn)題解決的方法解決如下問(wèn)題:

7)如圖7有同樣大小的小正方體8個(gè),拼成如圖所示的的一個(gè)大的正方體.如果用一條直線(xiàn)穿過(guò)這個(gè)大正方體的話(huà),最多可以穿過(guò)___________個(gè)小正方體.

8)如果用一條直線(xiàn)穿過(guò)的大正方體的話(huà),最多可以穿過(guò)_________個(gè)小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是3BPCQ,連接AQ、DP交于點(diǎn)O,并分別與邊CD、BC交于點(diǎn)F、E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2OEOP③SAODS四邊形OECF;當(dāng)BP1時(shí),tan∠OAE,其中正確結(jié)論的是_____.(請(qǐng)將正確結(jié)論的序號(hào)填寫(xiě)在橫線(xiàn)上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶(hù)承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為,投人市場(chǎng)銷(xiāo)售時(shí),調(diào)査市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷(xiāo)售不會(huì)虧本,且每天銷(xiāo)售量 (單位:千克)與銷(xiāo)售單價(jià) (單位: )之間的函數(shù)關(guān)系如圖

(1)的函數(shù)解析式,并寫(xiě)出的取值范圍;

(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷(xiāo)售獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

(3)某農(nóng)戶(hù)今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷(xiāo)售,能否銷(xiāo)售完這批蜜柚?請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案