【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,直線MN與⊙O相切于點C,過點BBDMN于點D

1)求證:∠ABC=∠CBD;(2)若BC4,CD4,則⊙O的半徑是   

【答案】1)見解析;(25

【解析】

1)連接OC,由切線的性質(zhì)可得OCMN,即可證得OCBD,由平行線的性質(zhì)和等腰三角形的性質(zhì)可得∠CBD=∠BCO=∠ABC,即可證得結(jié)論;

2)連接AC,由勾股定理求得BD,然后通過證得△ABC∽△CBD,求得直徑AB,從而求得半徑.

1)證明:連接OC

MN為⊙O的切線,

OCMN,

BDMN

OCBD,

∴∠CBD=∠BCO

又∵OCOB,

∴∠BCO=∠ABC,

∴∠CBD=∠ABC.;

2)解:連接AC,

RtBCD中,BC4,CD4

BD8,

AB是⊙O的直徑,

∴∠ACB90°,

∴∠ACB=∠CDB90°,

∵∠ABC=∠CBD

∴△ABC∽△CBD,

,即,

AB10,

∴⊙O的半徑是5

故答案為5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:

計費項目

里程費

時長費

遠(yuǎn)途費

單價

1.8/千米

0.3/

0.8/千米

注:車費由里程費、時長費、遠(yuǎn)途費三部分構(gòu)成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠(yuǎn)途費的收取方式為行車?yán)锍?/span>7千米以內(nèi)(含7千米)不收遠(yuǎn)途費,超過7千米的,超出部分每千米收0.8.

1)小王與小張各自乘坐滴滴快車,在同一地點約見,已知到達(dá)約見地點,他們的實際行車?yán)锍谭謩e為6千米與8.5千米,兩人付給滴滴快車的乘車費相同(1)求這兩輛滴滴快車的實際行車時間相差多少分鐘;

2)實際乘車時間較少的人,由于出發(fā)時間比另一人早,所以提前到達(dá)約見地點在大廳等候.已知他等候另一人的時間是他自己實際乘車時間的1.5倍,且比另一人的實際乘車時間的一半多8.5分鐘,計算兩人各自的實際乘車時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,給定一個正方形,要通過畫線將其分割成若干個互不重疊的正方形.第1次畫線分割成4個互不重疊的正方形,得到圖2;第2次畫線分割成7個互不重疊的正方形,得到圖3……以后每次只在上次得到圖形的左上角的正方形中畫線.

嘗試:第3次畫線后,分割成    個互不重疊的正方形;

4次畫線后,分割成    個互不重疊的正方形.

發(fā)現(xiàn):第n次畫線后,分割成    個互不重疊的正方形;并求第2020次畫線后得到互不重疊的正方形的個數(shù).

探究:若干次畫線后,能否得到1001個互不重疊的正方形?若能,求出是第幾次畫線后得到的;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,四邊形OABC是正方形,A的坐標(biāo)是(4,0),p為邊AB上的一點,CPB=60°,沿CP折疊正方形后,B落在平面內(nèi)B’處,B’的坐標(biāo)為(

A.(2, 2)B.(, 2-2)C.(2, 4-2)D.(, 4-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形,點的坐標(biāo)是

(1)正方形的邊長為 ,點的坐標(biāo)是 ;

(2)將正方形繞點順時針旋轉(zhuǎn),點,旋轉(zhuǎn)后的對應(yīng)點為,,,求點的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;

(3)動點從點出發(fā),沿折線方向以1個單位/秒的速度勻速運動,同時,另一動點從點出發(fā),沿折線方向以2個單位/秒的速度勻速運動,運動時間為秒,當(dāng)它們相遇時同時停止運動,當(dāng)為等腰三角形時,求出的值(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:將函數(shù)l的圖象繞點Pm,0)旋轉(zhuǎn)180°,得到新的函數(shù)l'的圖象,我們稱函數(shù)l'是函數(shù)關(guān)于點P的相關(guān)函數(shù).

例如:當(dāng)m1時,函數(shù)y=(x+12+5關(guān)于點P1,0)的相關(guān)函數(shù)為y=﹣(x325

1)當(dāng)m0

一次函數(shù)yx1關(guān)于點P的相關(guān)函數(shù)為 ;

點(,﹣)在二次函數(shù)y=﹣ax2ax+1a0)關(guān)于點P的相關(guān)函數(shù)的圖象上,求a的值.

2)函數(shù)y=(x12+2關(guān)于點P的相關(guān)函數(shù)y=﹣(x+322,則m   

3)當(dāng)m1xm+2時,函數(shù)yx2mxm2關(guān)于點Pm,0)的相關(guān)函數(shù)的最大值為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191122日,教育部發(fā)布關(guān)于《中小學(xué)教師實施教育懲戒規(guī)則(征求意見稿)》公開征求意見的通知,征求意見稿指出;教育懲戒是教師履行救育教學(xué)職責(zé)的必要手段和法定職權(quán).教育懲戒分為:一般懲戒,:較重懲戒,:嚴(yán)重懲戒,:強(qiáng)制措施,共四個層次.為了解家長對教育懲戒的看法,某中學(xué)對學(xué)生家長進(jìn)行了隨機(jī)調(diào)查,要求每位家長選擇其中最關(guān)注的一個層次提出意見,學(xué)校對收集的信息進(jìn)行統(tǒng)計,繪制了下面兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)被調(diào)查的總?cè)藬?shù)是______人;

2)扇形統(tǒng)計圖中部分對應(yīng)的圓心角的度數(shù)為______;

3)補全條形統(tǒng)計圖;

4)某班主任對學(xué)生進(jìn)行了紀(jì)律教育,要求小明和小軍分別從題中所述的四個層次中隨機(jī)選擇一個層次說明懲戒內(nèi)容.請用列表法或畫樹狀圖法求兩人選擇不同教育懲戒層次的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的屋頂,是建筑中經(jīng)常采用的結(jié)構(gòu)形式.在如圖所示的等腰三角形屋頂ABC中,AB=AC,測得BC=20米,∠C=41°,求頂點ABC邊的距離是多少米?(結(jié)果精確到0.1米.參考數(shù)據(jù):sin41°0.656,cos41°0.755,tan41°0.869.)

查看答案和解析>>

同步練習(xí)冊答案