x
3
=
y
4
=
z
5
,則
x+y+z
z
=
 
分析:設(shè)
x
3
=
y
4
=
z
5
=k(k≠0)分別用k表示出x、y和z,進而求出
x+y+z
z
的值.
解答:解:設(shè)
x
3
=
y
4
=
z
5
=k,即x=3k,y=4k,z=5k,
x+y+z
z
=
3k+4k+5k
5k
=
12
5

故答案為
12
5
點評:本題主要考查比例的性質(zhì)的知識點,解答本題的關(guān)鍵是設(shè)出
x
3
=
y
4
=
z
5
=k,此題比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

x
3
=
y
4
=
z
5
,則
x+y
x-2y+3z
=
7
10
7
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

x
3
=
y
4
=
z
5
,則
4x+3y-2z
x+y+z
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

x
3
=
y
4
=
z
5
,則
-x+y
x+2y+3z
=
1
26
1
26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

x
3
=
y
4
=
z
5
,則
x+y+z
z
=
12
5
12
5
;若
x-y
y
=
1
2
,則
x
y
=
3
2
3
2

查看答案和解析>>

同步練習(xí)冊答案