分析 (1)由于∠PCB=∠BCQ=45°,故有∠PCQ=90°.
(2)由等腰直角三角形的性質(zhì)知,AC=4$\sqrt{2}$,根據(jù)已知條件,可求得AP,PC的值,再由勾股定理求得PQ的值.
解答 解:(1)∵△ABP繞頂點B沿順時針方向旋轉(zhuǎn)90°后得到△CBQ,
∴△ABP≌△CQB,
∴∠A=∠ACB=∠BCQ=45°,∠ABP=∠CPQ,AP=CQ,PB=BQ,
∴∠PCQ=∠ACB+∠BCQ=90°;
(2)由(1)知,∠PCQ=∠ACB+∠BCQ=90°;
∴∠ABP+∠PBC=∠CPQ+∠PBC=90°,
∴△PCQ是直角三角形.
∵等腰直角△ABC中,∠ABC=90°,
∴AB=BC=4,
∴AC=$\sqrt{2}$AB=4$\sqrt{2}$,
∵AP:PC=1:3,
∴AP=$\sqrt{2}$,PC=3$\sqrt{2}$,
∴QC=AP=$\sqrt{2}$,
∴PQ=$\sqrt{P{C}^{2}+C{Q}^{2}}$=2$\sqrt{5}$.
點評 本題考查了勾股定理,等腰直角三角形.解題時,綜合利用了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),勾股定理求解.
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{5}$ | B. | $\frac{{\sqrt{15}}}{3}$ | C. | $\frac{{\sqrt{15}}}{5}$或$\frac{{\sqrt{15}}}{3}$ | D. | 以上都不對 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (a+$\frac{1}{2}$b)-(-$\frac{1}{3}$c+$\frac{2}{7}$)=a+$\frac{1}{2}$b+$\frac{1}{3}c$-$\frac{2}{7}$ | B. | m+(-n+a-b)=m-n+a-b | ||
C. | x-(3y-$\frac{1}{2}$)=x-3y+$\frac{1}{2}$ | D. | -$\frac{1}{2}$(4x-6y+3)=-2x+3y+3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com