分析 延長AE交BC于M,先證明△ADE≌△MBE得AD=BM.AE=EM,再利用三角形中位線即可證明.
解答 證明:延長AE交BC于M,
∵AD∥BM,
∴∠ADB=∠DBM,
在△ADE和△MBE中,
$\left\{\begin{array}{l}{∠ADE=∠EBM}\\{DE=EB}\\{∠AED=∠BEM}\end{array}\right.$,
∴△ADE≌△MBE,
∴AD=BM.AE=EM,
∵AF=FC,
∴EF∥CM,EF=$\frac{1}{2}$CM=$\frac{1}{2}$(BC-BM)=$\frac{1}{2}(BC-AD)$.
點(diǎn)評 本題考查三角形中位線的性質(zhì)、全等三角形的判定和性質(zhì)、解題的根據(jù)是添加輔助線構(gòu)造全等三角形,屬于中考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | $\sqrt{15}$ | C. | $-\sqrt{15}$ | D. | ±$\sqrt{15}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com