【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結論正確的是________(只需填寫序號).

【答案】②③

【解析】試題分析:∠BAD∠ABC不一定相等,選項錯誤;

∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項正確;

AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6, Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5, 所以∠8=∠7, 所以CP=QP;由知:∠3=∠5=∠4,則AP=CP; 所以AP=CP=QP,則點P△ACQ的外心,選項正確.

則正確的選項序號有②③.故答案為:②③

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中,,于點H,點DAH上,且,連接BD

如圖1,將繞點H旋轉,得到B、D分別與點E、F對應,連接AE,當點F落在AC上時不與C重合,求AE的長;

如圖2,是由繞點H逆時針旋轉得到的,射線CFAE相交于點G,連接GH,試探究線段GHEF之間滿足的等量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=+bx+c經過A、B兩點,點C是拋物線與x軸的另一個交點,該拋物線的對稱軸與x軸交于點E.

(1)直接寫出拋物線的解析式為

(2)以點E為圓心的E與直線AB相切,求E的半徑;

(3)連接BC,點P是第三象限內拋物線上的動點,連接PE交線段BC于點D,當CED為直角三角形時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍ABBC兩邊),設ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹與墻CDAD的距離分別是17m6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點Am,m+1),Bm+3,m-1)是反比例函數(shù)與一次函數(shù)的交點.

1)求反比例函數(shù)與一次函數(shù)的解析式;

2)請直接寫出當反比例函數(shù)的函數(shù)值不大于一次函數(shù)的函數(shù)值時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知開口向上的拋物線yax2+bx+cx軸交于A(﹣30)、B1,0)兩點,與y軸交于C點,∠ACB不小于90°

1)求點C的坐標(用含a的代數(shù)式表示);

2)求系數(shù)a的取值范圍;

3)設拋物線的頂點為D,求BCDCD邊上的高h的最大值.

4)設E(-,0),當∠ACB90°,在線段AC上是否存在點F,使得直線EFABC的面積平分?若存在,求出點F的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地相距90km,甲騎摩托車由A地出發(fā),去B地辦事,甲出發(fā)的同時,乙騎自行車同時由B地出發(fā)沿著同一條道路前往A地,甲辦完事后原速返回A地,結果比乙早到0.5小時.甲、乙兩人離A地距離ykm)與時間xh)的函數(shù)關系圖像如圖所示.下列說法:①.a=3.5,b=4甲走的全路程是90km;③乙的平均速度是22.5km/h;.④甲在B地辦事停留了0.5小時.其中正確的說法有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°,BCAC,點 D AB 上,DEAB BC E,點 F AE 的中點

1 寫出線段 FD 與線段 FC 的關系并證明;

2 如圖 2,將BDE 繞點 B 逆時針旋轉αα90°),其它條件不變,線段 FD 與線段 FC 的關系是否變化,寫出你的結論并證明;

3 BDE 繞點 B 逆時針旋轉一周,如果 BC4,BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某店因為經營不善欠下38400元的無息貸款的債務,想轉行經營服裝專賣店又缺少資金中國夢想秀欄目組決定借給該店30000元資金,并約定利用經營的利潤償還債務所有債務均不計利息已知該店代理的品牌服裝的進價為每件40元,該品牌服裝日銷售量與銷售價之間的關系可用圖中的一條折線實線來表示該店應支付員工的工資為每人每天82元,每天還應支付其它費用為106不包含債務

求日銷售量與銷售價之間的函數(shù)關系式;

若該店暫不考慮償還債務,當某天的銷售價為48件時,當天正好收支平衡收人支出,求該店員工的人數(shù);

若該店只有2名員工,則該店最早需要多少天能還清所有債務,此時每件服裝的價格應定為多少元?

查看答案和解析>>

同步練習冊答案