【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(1,1),B(4,2),C(3,5).
(1)求△ABC的面積;
(2)在圖中畫出△ABC繞點A逆時針旋轉(zhuǎn)90°得到的△A'B'C',并寫出點C的對應(yīng)點C'的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】M、N兩同學(xué)在做一種游戲,規(guī)定每人隨機伸出一只手中的1根至5根手指,兩人伸出的手指的和若為2,3,4,8,9,10,則M勝;若和為5,6,7,則N勝.
(1)用畫樹狀圖法分別求M、N兩人獲勝的概率;
(2)上面的游戲公平嗎?若不公平,你能否設(shè)計一個方案使游戲絕對公平?若能,寫出方案;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量箱與銷售價元/箱之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:三角形ABC內(nèi)接于圓O,∠BAC與∠ABC的角平分線AE,BE相交于點E,延長AE交外接圓O于點D,連接BD,DC,且∠BCA=60°
(1)求∠BED的大;
(2)證明:△BED為等邊三角形;
(3)若∠ADC=30°,圓O的半徑為r,求等邊三角形BED的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx﹣3與x軸交于A點,與y軸交于C點,且A(1,0)、B(3,0),點D是拋物線的頂點.
(1)求拋物線的解析式
(2)在y軸上是否存在M點,使得△MAC是以AC為腰的等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
(3)點P為拋物線上的動點,且在對稱軸右側(cè),若△ADP面積為3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,cm, cm,在中,,cm,cm.EF在BC上,保持不動,并將以1cm/s的速度向點C運動,移動開始前點F與點B重合,當(dāng)點E與點C重合時,停止移動.邊DE與AB相交于點G,連接FG,設(shè)移動時間為t(s).
(1)從移動開始到停止,所用時間為________s;
(2)當(dāng)DE平分AB時,求t的值;
(3)當(dāng)為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=α.⊙O是△ABC的內(nèi)切圓,⊙P分別與CA的延長線、CB的延長線以及直線AB均只有一個公共點,⊙O的半徑為m,⊙P的半徑為n.
(1)當(dāng)α=90°時,AC=6,BC=8時,m= ,n= .
(2)當(dāng)α取下列度數(shù)時,求△ABC的面積(用含有m、n的代數(shù)式表示).
①如圖①,α=90°;
②如圖②,α=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,是一次函數(shù)和反比例函數(shù)的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求的面積;
(3)根據(jù)圖象直接寫出的的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com