(2010•天津)在平面直角坐標(biāo)系中,矩形OACB的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點(diǎn).

(1)若E為邊OA上的一個(gè)動(dòng)點(diǎn),當(dāng)△CDE的周長最小時(shí),求點(diǎn)E的坐標(biāo);
(2)若E、F為邊OA上的兩個(gè)動(dòng)點(diǎn),且EF=2,當(dāng)四邊形CDEF的周長最小時(shí),求點(diǎn)E、F的坐標(biāo).
(溫馨提示:可以作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D',連接CD'與x軸交于點(diǎn)E,此時(shí)△CDE的周長是最小的.這樣,你只需求出OE的長,就可以確定點(diǎn)E的坐標(biāo)了.)
【答案】分析:(1)由于C、D是定點(diǎn),則CD是定值,如果△CDE的周長最小,即DE+CE有最小值.為此,作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D',當(dāng)點(diǎn)E在線段CD′上時(shí),△CDE的周長最。
(2)由于DC、EF的長為定值,如果四邊形CDEF的周長最小,即DE+FC有最小值.為此,作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D',在CB邊上截取CG=2,當(dāng)點(diǎn)E在線段D′G上時(shí),四邊形CDEF的周長最。
解答:解:(1)如圖,作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D',連接CD'與x軸交于點(diǎn)E,連接DE.
若在邊OA上任取點(diǎn)E'與點(diǎn)E不重合,連接CE'、DE'、D'E'
由DE'+CE'=D'E'+CE'>CD'=D'E+CE=DE+CE,
可知△CDE的周長最小.
∵在矩形OACB中,OA=3,OB=4,D為OB的中點(diǎn),
∴BC=3,D'O=DO=2,D'B=6,
∵OE∥BC,
∴Rt△D'OE∽R(shí)t△D'BC,有

∴點(diǎn)E的坐標(biāo)為(1,0);

(2)如圖,作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D',在CB邊上截取CG=2,連接D'G與x軸交于點(diǎn)E,在EA上截取EF=2,
∵GC∥EF,GC=EF,
∴四邊形GEFC為平行四邊形,有GE=CF,
又DC、EF的長為定值,
∴此時(shí)得到的點(diǎn)E、F使四邊形CDEF的周長最。
∵OE∥BC,
∴Rt△D'OE∽R(shí)t△D'BG,有


∴點(diǎn)E的坐標(biāo)為(,0),點(diǎn)F的坐標(biāo)為(,0)(10分)
點(diǎn)評:此題主要考查軸對稱--最短路線問題,解決此類問題,一般都是運(yùn)用軸對稱的性質(zhì),將求折線問題轉(zhuǎn)化為求線段問題,其說明最短的依據(jù)是三角形兩邊之和大于第三邊.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•天津)在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A、B點(diǎn)A在點(diǎn)B的左側(cè),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為E.
(1)若b=2,c=3,求此時(shí)拋物線頂點(diǎn)E的坐標(biāo);
(2)將(1)中的拋物線向下平移,若平移后,在四邊形ABEC中滿足S△BCE=S△ABC,求此時(shí)直線BC的解析式;
(3)將(1)中的拋物線作適當(dāng)?shù)钠揭疲羝揭坪,在四邊形ABEC中滿足S△BCE=2S△AOC,且頂點(diǎn)E恰好落在直線y=-4x+3上,求此時(shí)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•天津)在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A、B點(diǎn)A在點(diǎn)B的左側(cè),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為E.
(1)若b=2,c=3,求此時(shí)拋物線頂點(diǎn)E的坐標(biāo);
(2)將(1)中的拋物線向下平移,若平移后,在四邊形ABEC中滿足S△BCE=S△ABC,求此時(shí)直線BC的解析式;
(3)將(1)中的拋物線作適當(dāng)?shù)钠揭疲羝揭坪,在四邊形ABEC中滿足S△BCE=2S△AOC,且頂點(diǎn)E恰好落在直線y=-4x+3上,求此時(shí)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•天津)在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A、B點(diǎn)A在點(diǎn)B的左側(cè),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為E.
(1)若b=2,c=3,求此時(shí)拋物線頂點(diǎn)E的坐標(biāo);
(2)將(1)中的拋物線向下平移,若平移后,在四邊形ABEC中滿足S△BCE=S△ABC,求此時(shí)直線BC的解析式;
(3)將(1)中的拋物線作適當(dāng)?shù)钠揭,若平移后,在四邊形ABEC中滿足S△BCE=2S△AOC,且頂點(diǎn)E恰好落在直線y=-4x+3上,求此時(shí)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(03)(解析版) 題型:選擇題

(2010•天津)在一次射擊比賽中,甲、乙兩名運(yùn)動(dòng)員10次射擊的平均成績都是7環(huán),其中甲的成績的方差為1.21,乙的成績的方差為3.98,由此可知( )
A.甲比乙的成績穩(wěn)定
B.乙比甲的成績穩(wěn)定
C.甲、乙兩人的成績一樣穩(wěn)定
D.無法確定誰的成績更穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•天津)在一次射擊比賽中,甲、乙兩名運(yùn)動(dòng)員10次射擊的平均成績都是7環(huán),其中甲的成績的方差為1.21,乙的成績的方差為3.98,由此可知( )
A.甲比乙的成績穩(wěn)定
B.乙比甲的成績穩(wěn)定
C.甲、乙兩人的成績一樣穩(wěn)定
D.無法確定誰的成績更穩(wěn)定

查看答案和解析>>

同步練習(xí)冊答案