【題目】如圖所示,A、B兩城市相距100km.現(xiàn)計劃在這兩座城市間修筑一條高速公路(即線段AB),經(jīng)測量,森林保護中心P在A城市的北偏東30°和B城市的北偏西45°的方向上.已知森林保護區(qū)的范圍在以P點為圓心,50km為半徑的圓形區(qū)域內(nèi).請問計劃修筑的這條高速公路會不會穿越保護區(qū).為什么?(參考數(shù)據(jù):

【答案】不會穿越保護區(qū)

【解析】

過點PPCAB,C是垂足.ACBC就都可以根據(jù)三角函數(shù)用PC表示出來.根據(jù)AB的長,得到一個關(guān)于PC的方程,解出PC的長.從而判斷出這條高速公路會不會穿越保護區(qū).

解:

不會穿越保護區(qū)

過點PPCABC是垂足。

AC+BC=AB,

所以計劃修的這條路不會穿越保護區(qū)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設(shè)計要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1l2的距離也必須相等,發(fā)射塔C應修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位,ABC的三個頂點都在格點上,請按要求畫圖和填空:

1)在網(wǎng)格中畫出ABC向下平移5個單位得到的A1B1C1

2)在網(wǎng)格中畫出A1B1C1關(guān)于直線l對稱的A2B2C2;

3)在網(wǎng)格中畫出將ABC繞點A按逆時針方向旋轉(zhuǎn)90度得到的AB3C3;

4)在圖中探究并求得ABC的面積= (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,以AB為直徑作半圓⊙OAC于點D,點EBC的中點,連接DE.

(1)求證:DE是半圓⊙O的切線;

(2)若∠BAC=30°,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D AB的中點.

(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.

若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD △CQP 是否全等,請說明理由;

若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD △CQP 全等?

(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分DAB,ADC=ACB=90°,E為AB的中點,

(1)求證:AC2=ABAD;

(2)求證:CEAD;

(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC、△ADC、△AMN均為等邊三角形,AM>AB,AMDC交于點E,ANBC交于點F.

(1)試說明:△ABF≌△ACE;

(2)猜測△AEF的形狀,并說明你的結(jié)論;

(3)請直接指出當F點在BC何處時,AC⊥EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE BC 邊的中線,過點C CF⊥AE,垂足為點 F,過點 B BD⊥BC CF 的延長線于點 D.

(1)試證明:AE=CD;

(2)若 AC=12cm,求線段 BD 的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】沿圖1長方形中的虛線平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

(1)2中的陰影部分的面積為 .

(2)觀察圖2,請你寫出代數(shù)式(m+n)2、(m-n)2mn之間的等量關(guān)系式.

(3)根據(jù)你得到的關(guān)系式解答下列問題:若x+y=-6,xy=5,xy= .

(4)實際上有許多代數(shù)恒等式可以用圖形的面積來表示.如圖3,它表示了(2m+n)(m+n)=2m2+3mn+n2.試畫出一個幾何圖形,使它的面積能表示(m+n)(m+3n)=m2+4mn+3n2.

查看答案和解析>>

同步練習冊答案