【題目】如圖,平面直角坐標(biāo)系中,A(8,0),B(0,6),∠BAO,∠ABO的平分線相交于點(diǎn)C,過(guò)點(diǎn)C作CD∥x軸交AB于點(diǎn)D,則點(diǎn)D的坐標(biāo)為( 。
A.( ,2)B.( ,1)C.( ,2)D.(,1)
【答案】A
【解析】
延長(zhǎng)DC交y軸于F,過(guò)C作CG⊥OA于G,CE⊥AB于E,根據(jù)角平分線的性質(zhì)得到FC=CG=CE,求得DH=CG=CF,設(shè)DH=3x,AH=4x,根據(jù)勾股定理得到AD=5x,根據(jù)平行線的性質(zhì)得到∠DCA=∠CAG,求得∠DCA=∠DAC,得到CD=HG=AD=5x,列方程即可得到結(jié)論.
解:延長(zhǎng)DC交y軸于F,過(guò)C作CG⊥OA于G,CE⊥AB于E,
∵CD∥x軸,
∴DF⊥OB,
∵∠BAO,∠ABO的平分線相交于點(diǎn)C,
∴FC=CG=CE,
∴DH=CG=CF,
∵A(8,0),B(0,6),
∴OA=8,OB=6,
∴tan∠OAB===,
∴設(shè)DH=3x,AH=4x,
∴AD=5x,
∵CD∥OA,
∴∠DCA=∠CAG,
∵∠DAC=∠GAC,
∴∠DCA=∠DAC,
∴CD=HG=AD=5x,
∴3x+5x+4x=8,
∴x=,
∴DH=2,OH=,
∴D(,2),
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華人民共和國(guó)《城市道路路內(nèi)停車(chē)泊位設(shè)置規(guī)范》規(guī)定:
一、在城市道路范圍內(nèi),在不影響行人、車(chē)輛通行的情況下,政府有關(guān)部門(mén)可以規(guī)劃停車(chē)泊位.停車(chē)泊位的排列方式有三種,如圖所示:
二、雙向通行道路,路幅寬米以上的,可在兩側(cè)設(shè)停車(chē)泊位,路幅寬米到米的,可在單側(cè)設(shè)停車(chē)泊位,路幅寬米以下的,不能設(shè)停車(chē)泊位;
三、規(guī)定小型停車(chē)泊位,車(chē)位長(zhǎng)米,車(chē)位寬米;
四、設(shè)置城市道路路內(nèi)機(jī)動(dòng)車(chē)停車(chē)泊位后,用于單向通行的道路寬度應(yīng)不小于米.
根據(jù)上述的規(guī)定,在不考慮車(chē)位間隔線和車(chē)道間隔線的寬度的情況下,如果在一條路幅寬為米的雙向通行車(chē)道設(shè)置同一種排列方式的小型停車(chē)泊位,請(qǐng)回答下列問(wèn)題:
(1)可在該道路兩側(cè)設(shè)置停車(chē)泊位的排列方式為 ;
(2)如果這段道路長(zhǎng)米,那么在道路兩側(cè)最多可以設(shè)置停車(chē)泊位 個(gè).
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在AB、CD邊上,AD=6,AB=8,將△CBE沿CE翻折,使B點(diǎn)的對(duì)應(yīng)點(diǎn)B′剛好落在對(duì)角線AC上,將△ADF沿AF翻折,使D點(diǎn)的對(duì)應(yīng)點(diǎn)D′也恰好落在對(duì)角線AC上,連接EF,則EF的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的解析式為,則下列說(shuō)法中錯(cuò)誤的是( )
A.確定拋物線的開(kāi)口方向與大小
B.若將拋物線沿軸平移,則,的值不變
C.若將拋物線沿軸平移,則的值不變
D.若將拋物線沿直線:平移,則、、的值全變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的對(duì)稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.
(1)若直線經(jīng)過(guò)、兩點(diǎn),求直線和拋物線的解析式;
(2)在拋物線的對(duì)稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開(kāi)展了尋找古樹(shù)活動(dòng).如圖,在一個(gè)坡度(或坡比)i=1:2.4的山坡AB上發(fā)現(xiàn)有一棵古樹(shù)CD.測(cè)得古樹(shù)底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹(shù)頂端D的仰角∠AED=48°(古樹(shù)CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹(shù)CD與直線AE垂直),則古樹(shù)CD的高度約為多少米?(參考數(shù)據(jù):sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,,,是射線上一點(diǎn),連接,沿將折疊,得.
(1)如圖所示,當(dāng)時(shí),_______度;
(2)如圖所示,當(dāng)時(shí),求線段的長(zhǎng)度;
(3)當(dāng)點(diǎn)為中點(diǎn)時(shí),點(diǎn)是邊上不與點(diǎn)、重合的一個(gè)動(dòng)點(diǎn),將沿折疊,得到,連接,求周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九大召開(kāi)后,某社區(qū)開(kāi)展了“市民對(duì)十九大的關(guān)注情況”調(diào)查,采用隨機(jī)抽樣的方法訪問(wèn)了部分年齡在18周歲以上的城鄉(xiāng)居民.小聰根據(jù)調(diào)查數(shù)據(jù)繪制了如下不完整的頻數(shù)分布置表和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖表解答下列問(wèn)題.
關(guān)注情況 | 頻數(shù) |
非常關(guān)注() | 128 |
比較關(guān)注() | |
一般關(guān)注() | 80 |
不太關(guān)注() | |
不關(guān)注() | 2 |
(1)請(qǐng)完成頻數(shù)分布表空格數(shù)據(jù)填寫(xiě);
(2)求“非常關(guān)注”部分扇形圓心角的度數(shù);
(3)若該社區(qū)18周歲以上居民共有20000人,請(qǐng)估計(jì)“比較關(guān)注”和“非常關(guān)注”的居民共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,的三個(gè)頂點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫(huà)一個(gè)(點(diǎn)在小正方形的頂點(diǎn)上),使的周長(zhǎng)等于的周長(zhǎng),且以、、、為頂點(diǎn)的四邊形是軸對(duì)稱圖形;
(2)在圖2中畫(huà)(點(diǎn)在小正方形的頂點(diǎn)上),使的周長(zhǎng)等于的周長(zhǎng),且以、、、為頂點(diǎn)的四邊形是中心對(duì)稱圖形;
(3)直接寫(xiě)出圖2中四邊形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com