三角形ABC沿x軸正方向平移2個單位長度,再沿y軸負(fù)方向平移1個單位長度得到三角形EFG.
(1)寫出三角形EFG的三個頂點坐標(biāo);
(2)求三角形EFG的面積.
分析:(1)將A、B、C三點向右平移2個單位,再沿y軸負(fù)方向平移1個單位長度,找到各點的對應(yīng)點,順次連接可得△EFG;
(2)利用“構(gòu)圖法”,求解△EFG的面積即可.
解答:解:(1)如圖所示:
點E(4,1),點F(0,-2),點G(5,-3);
(2)S△EFG=4×5-
1
2
×4×3-
1
2
×1×5-
1
2
×1×4=
19
2
點評:本題考查了平移作圖及三角形的面積,“構(gòu)圖法”求格點三角形的面積是經(jīng)常用到的,同學(xué)們注意掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點B與原點O重合,BC邊落在x軸的正半軸上,點A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運(yùn)動,當(dāng)點P達(dá)到點C時,點P停止運(yùn)動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長;
(2)當(dāng)點P在線段BA上運(yùn)動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)點P沿折線B→A→C運(yùn)動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄂州)已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x-2經(jīng)過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運(yùn)動,(如圖2);當(dāng)點P運(yùn)動到原點O時,直線DE與點P都停止運(yùn)動,連DP,若點P運(yùn)動時間為t秒;設(shè)s=
ED+OPED•OP
,當(dāng)t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年吉林省中考數(shù)學(xué)模擬試卷(六)(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點B與原點O重合,BC邊落在x軸的正半軸上,點A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運(yùn)動,當(dāng)點P達(dá)到點C時,點P停止運(yùn)動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長;
(2)當(dāng)點P在線段BA上運(yùn)動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)點P沿折線B→A→C運(yùn)動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點B與原點O重合,BC邊落在x軸的正半軸上,點A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運(yùn)動,當(dāng)點P達(dá)到點C時,點P停止運(yùn)動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長;
(2)當(dāng)點P在線段BA上運(yùn)動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)點P沿折線B→A→C運(yùn)動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年重慶市城口縣高望中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點B與原點O重合,BC邊落在x軸的正半軸上,點A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運(yùn)動,當(dāng)點P達(dá)到點C時,點P停止運(yùn)動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長;
(2)當(dāng)點P在線段BA上運(yùn)動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)點P沿折線B→A→C運(yùn)動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案