?ABCD中一條對(duì)角線分∠A為35°和45°,則∠B=________度.

100
分析:求出∠BAD度數(shù),根據(jù)平行四邊形性質(zhì)得出AD∥BC,推出∠B+∠BAD=180°即可.
解答:
解:∵?ABCD中一條對(duì)角線分∠A為35°和45°,
∴∠BAD=80°,
∵四邊形BACD是平行四邊形,
∴BC∥AD,
∴∠B+∠BAD=180°,
∴∠B=100°,
故答案為:100.
點(diǎn)評(píng):本題考查了平行四邊形性質(zhì)和平行線性質(zhì)的應(yīng)用,關(guān)鍵是求出∠BAD度數(shù)和得出∠B+∠BAD=180°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

圖1是只有一組對(duì)角為直角的四邊形(我們規(guī)定這一類四邊形的集合為M),連接它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)四邊形的“直徑”(相當(dāng)于經(jīng)過這個(gè)四邊形的四個(gè)頂點(diǎn)的圓的直徑).
(1)識(shí)圖:如圖1,四邊形ABCD的直徑是線段
BD
BD
;
(2)判斷:如圖2,在坐標(biāo)系中(網(wǎng)格小方格的單位長為1)的四邊形EFGH是否為M中的四邊形?給出簡要說明;
(3)思考、操作并解決問題:在圖2中找到一個(gè)點(diǎn)P,使四邊形EFPH為M中的四邊形,并且這個(gè)四邊形用一條直線分割成兩塊后可以拼成一個(gè)正方形.要求:寫出點(diǎn)P的坐標(biāo)、畫出分割線,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,則:
(1)AB=AD=
BC
BC
=
CD
CD
,即菱形的
四條邊
四條邊
相等.
(2)圖中的等腰三角形有
△ABD、△ABC、△ADC、△BCD
△ABD、△ABC、△ADC、△BCD
,直角三角形有
△DOA、△AOB、△COB、△COD
△DOA、△AOB、△COB、△COD
,△AOD≌
△AOB
△AOB
△COB
△COB
△COD
△COD
,由此可以得出菱形的對(duì)角線
垂直平分
垂直平分
,每一條對(duì)角線
平分一組對(duì)角
平分一組對(duì)角

(3)菱形是軸對(duì)稱圖形,它的對(duì)稱軸是
對(duì)角線所在的直線
對(duì)角線所在的直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,E是CD邊上的中點(diǎn),AC與BE相交于點(diǎn)F,連接DF.(注:正方形的四邊相等,四個(gè)角都是直角,每一條對(duì)角線平分一組對(duì)角).  

1.(1) 在不增加點(diǎn)和線的前提下,直接寫出圖中所有的全等三角形;

2.連接AE,試判斷AE與DF的位置關(guān)系,并證明你的結(jié)論;

3.延長DF交BC于點(diǎn)M,試判斷BM與MC的數(shù)量關(guān)系,并說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,E是CD邊上的中點(diǎn),AC與BE相交于點(diǎn)F,連接DF.(注:正方形的四邊相等,四個(gè)角都是直角,每一條對(duì)角線平分一組對(duì)角).  
【小題1】(1) 在不增加點(diǎn)和線的前提下,直接寫出圖中所有的全等三角形;
【小題2】連接AE,試判斷AE與DF的位置關(guān)系,并證明你的結(jié)論;
【小題3】延長DF交BC于點(diǎn)M,試判斷BM與MC的數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆河北省承德地區(qū)八年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

如圖,在正方形ABCD中,E是CD邊上的中點(diǎn),AC與BE相交于點(diǎn)F,連接DF.(注:正方形的四邊相等,四個(gè)角都是直角,每一條對(duì)角線平分一組對(duì)角).  

1.(1) 在不增加點(diǎn)和線的前提下,直接寫出圖中所有的全等三角形;

2.連接AE,試判斷AE與DF的位置關(guān)系,并證明你的結(jié)論;

3.延長DF交BC于點(diǎn)M,試判斷BM與MC的數(shù)量關(guān)系,并說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案