如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結論;
(3)設AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

【答案】分析:(1)根據(jù)翻折變換的性質得出∠PBC=∠BPH,進而利用平行線的性質得出∠APB=∠PBC即可得出答案;
(2)首先證明△ABP≌△QBP,進而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)利用已知得出△EFM≌△BPA,進而利用在Rt△APE中,(4-BE)2+x2=BE2,利用二次函數(shù)的最值求出即可.
解答:(1)解:如圖1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.

(2)△PHD的周長不變?yōu)槎ㄖ?.
證明:如圖2,過B作BQ⊥PH,垂足為Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周長為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.

(3)如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB.
又∵EF為折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△PBA(ASA).
∴EM=AP=x.
∴在Rt△APE中,(4-BE)2+x2=BE2
解得,

又∵折疊的性質得出四邊形PEFG與四邊形BEFC全等,

即:
配方得,,
∴當x=2時,S有最小值6.
點評:此題主要考查了翻折變換的性質以及全等三角形的判定與性質和勾股定理、二次函數(shù)的最值問題等知識,熟練利用全等三角形的判定得出對應相等關系是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•德州)如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結論;
(3)設AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省徐州市九年級中考模擬數(shù)學試卷(帶解析) 題型:解答題

如圖所示,現(xiàn)有一張邊長為6的正方形紙片,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP.

(1)求證:∠APB=∠BPH;
(2)設AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省徐州市九年級中考模擬數(shù)學試卷(解析版) 題型:解答題

如圖所示,現(xiàn)有一張邊長為6的正方形紙片,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP.

(1)求證:∠APB=∠BPH;

(2)設AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(山東德州卷)數(shù)學(解析版) 題型:解答題

如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.

(1)求證:∠APB=∠BPH;

(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結論;

(3)設AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案