【題目】如圖,在平面直角坐標(biāo)系中, A(0,2),B(-1,0),Rt△AOC的面積為4.
(1)求點(diǎn)C的坐標(biāo);
(2)拋物線(xiàn)經(jīng)過(guò)A、B、C三點(diǎn),求拋物線(xiàn)的解析式和對(duì)稱(chēng)軸;
(3)設(shè)點(diǎn)P(m,n)是拋物線(xiàn)在第一象限部分上的點(diǎn),△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)C(4,0);(2),對(duì)稱(chēng)軸 ;(3),P(2,3).
【解析】分析:(1)由A(0,2),可得OA=2,再由Rt△AOC的面積為4,得OC的值,即可求了C點(diǎn)的坐標(biāo),(2)設(shè)拋物線(xiàn)的解析式為:y=ax2+bx+c,把A(0,2),B(-1,0),C(4,0)代入,即可求出拋物線(xiàn)的解析式,可得出對(duì)稱(chēng)軸,(3)由點(diǎn)A,C的坐標(biāo),可求出直線(xiàn)AC的解析式,過(guò)點(diǎn)P作PQ⊥x軸于H,交直線(xiàn)AC于Q,過(guò)點(diǎn)P作PM⊥AC于點(diǎn)M,由OA=2,OC=4,可得AC的值,從而得出cos∠ACO的值,設(shè)P(m,n),Q(m,-m+2),可求出PQ,利用,解得PM,由n= -m+m+2,得PM=×(-m+2m),再由三角形的面積公式即可求出S=-2m+8m,即可得出當(dāng)m=2,即P(2,3)時(shí),S的值最大.
本題解析:
(1)C(4,0)
(2)拋物線(xiàn)的解析式:,對(duì)稱(chēng)軸 .
(3)設(shè)直線(xiàn)AC的解析式為:,代入點(diǎn)A(0,2),C(4,0),得:
∴直線(xiàn)AC:;
過(guò)點(diǎn)P作PQ⊥x軸于H,交直線(xiàn)AC于Q,
設(shè)P(,),Q(,)
則
∴
∴當(dāng)m=2,即 P(2,3)時(shí),S的值最大.
點(diǎn)睛: 本題主要考查了二次次函數(shù)與方程、幾何知識(shí)的綜合應(yīng)用,解題的關(guān)鍵是善于將函數(shù)問(wèn)題轉(zhuǎn)化為方程問(wèn)題,善于利用幾何圖形的關(guān)性質(zhì)、定理和二次函數(shù)的知識(shí)求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ABCD的頂點(diǎn)A、C分別在直線(xiàn)x=2和x=5上,O是坐標(biāo)原點(diǎn),則對(duì)角線(xiàn)OB長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線(xiàn);
(3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在同一平面直角坐標(biāo)系中,正比例函數(shù)與二次函數(shù)y=-x2+2x+c的圖象交于點(diǎn)A(-1,m).
(1)求m,c的值;
(2)求二次函數(shù)圖象的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角三角形中的一個(gè)銳角的度數(shù)為自變量x,另一個(gè)銳角的度數(shù)y為因變量,則它們的關(guān)系式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一種窗框的設(shè)計(jì)示意圖,矩形ABCD被分成上下兩部分,上部的矩形CDFE由兩個(gè)正方形組成,制作窗框的材料總長(zhǎng)為6m.
(1)若AB為1m,直接寫(xiě)出此時(shí)窗戶(hù)的透光面積__________m2;
(2)設(shè)AB=x,求窗戶(hù)透光面積S關(guān)于x的函數(shù)表達(dá)式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車(chē)已越來(lái)越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車(chē)難問(wèn)題,建筑設(shè)計(jì)師提供了樓頂停車(chē)場(chǎng)的設(shè)計(jì)示意圖.按規(guī)定,停車(chē)場(chǎng)坡道口上坡要張貼限高標(biāo)志,以便告知車(chē)輛能否安全駛?cè)耄鐖D,地面所在的直線(xiàn)ME與樓頂所在的直線(xiàn)AC是平行的,CD的厚度為0.5m,求出汽車(chē)通過(guò)坡道口的限高DF的長(zhǎng)(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com