【題目】(12分)理數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過思考、討論、交流,得到以下思路:
思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長CB至點D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===.
思路二 利用科普書上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===.
思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…
思路四 …
請解決下列問題(上述思路僅供參考).
(1)類比:求出tan75°的值;
(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為60米,從A測得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;
(3)拓展:如圖3,直線與雙曲線交于A,B兩點,與y軸交于點C,將直線AB繞點C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點P的坐標(biāo);若不能,請說明理由.
【答案】(1);(2);(3)能相交,P(﹣1,﹣4)或(,3).
【解析】試題分析:(1)如圖1,只需借鑒思路一或思路二的方法,就可解決問題;
(2)如圖2,在Rt△ABC中,由勾股定理求出AB,由三角函數(shù)得出∠BAC=30°.從而得到∠DAB=75°.在Rt△ABD中,由三角函數(shù)就可求出DB,從而求出DC長;
(3)分類種情況討論:①若直線AB繞點C逆時針旋轉(zhuǎn)45°后,與雙曲線相交于點P,如圖3.過點C作CD∥x軸,過點P作PE⊥CD于E,過點A作AF⊥CD于F,可先求出點A、B、C的坐標(biāo),從而求出tan∠ACF的值,進而利用和(差)角正切公式求出tan∠PCE=tan(45°+∠ACF)的值,設(shè)點P的坐標(biāo)為(a,b),根據(jù)點P在反比例函數(shù)的圖象上及tan∠PCE的值,可得到關(guān)于a、b的兩個方程,解這個方程組就可得到點P的坐標(biāo);②若直線AB繞點C順時針旋轉(zhuǎn)45°后,與x軸相交于點G,如圖4,由①可知∠ACP=45°,P(,3),則有CP⊥CG.過點P作PH⊥y軸于H,易證△GOC∽△CHP,根據(jù)相似三角形的性質(zhì)可求出GO,從而得到點G的坐標(biāo),然后用待定系數(shù)法求出直線CG的解析式,然后將直線CG與反比例函數(shù)的解析式組成方程組,消去y,得到關(guān)于x的方程,運用根的判別式判定,得到方程無實數(shù)根,此時點P不存在.
試題解析:(1)方法一:如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長CB至點D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tan∠DAC=tan75°====;
方法二:tan75°=tan(45°+30°)====;
(2)如圖2,在Rt△ABC中,AB===,sin∠BAC=,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB=,∴DB=ABtan∠DAB=()=,∴DC=DB﹣BC==.
答:這座電視塔CD的高度為()米;
(3)①若直線AB繞點C逆時針旋轉(zhuǎn)45°后,與雙曲線相交于點P,如圖3.過點C作CD∥x軸,過點P作PE⊥CD于E,過點A作AF⊥CD于F.解方程組: ,得: 或,∴點A(4,1),點B(﹣2,﹣2).對于,當(dāng)x=0時,y=﹣1,則C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF=,∴tan∠PCE=tan(∠ACP+∠ACF)=tan(45°+∠ACF)===3,即=3.設(shè)點P的坐標(biāo)為(a,b),則有: ,
解得: 或,∴點P的坐標(biāo)為(﹣1,﹣4)或(,3);
②若直線AB繞點C順時針旋轉(zhuǎn)45°后,與x軸相交于點G,如圖4.由①可知∠ACP=45°,P(,3),則CP⊥CG.過點P作PH⊥y軸于H,則∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3﹣(﹣1)=4,PH=,OC=1,∴,∴GO=3,G(﹣3,0).設(shè)直線CG的解析式為,則有: ,解得: ,∴直線CG的解析式為.聯(lián)立: ,消去y,得: ,整理得: ,∵△=,∴方程沒有實數(shù)根,∴點P不存在.
綜上所述:直線AB繞點C旋轉(zhuǎn)45°后,能與雙曲線相交,交點P的坐標(biāo)為(﹣1,﹣4)或(,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出以下結(jié)論:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點,則y1>y2⑤當(dāng)﹣3≤x≤1時,y≥0,
其中正確的結(jié)論是(填寫代表正確結(jié)論的序號)__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因之一.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速.如圖,觀測點設(shè)在A處,離益陽大道的距離(AC)為30米.這時,一輛小轎車由西向東勻速行駛,測得此車從B處行駛到C處所用的時間為8秒,∠BAC=75°.
(1)求B、C兩點的距離;
(2)請判斷此車是否超過了益陽大道60千米/小時的限制速度?
(計算時距離精確到1米,參考數(shù)據(jù):sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732, ≈1.732,60千米/小時≈16.7米/秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,放置的△OAB1,△B1A1B2,△B2A2B3,…都是邊長為2的等邊三角形,邊AO在Y軸上,點B1、B2、B3…都在直線上,則點A2016的坐標(biāo)為( )
A. (2016,2018) B. (2016,2016) C. (2016,2016) D. (2016,2018)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中E是BC邊上一點,且AB=AE,AE,DC的延長線相交于點F.
(1)若∠F=62°,求∠D的度數(shù);
(2)若BE=3EC,且△EFC的面積為1,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以點O為圓心的兩個同心圓中,小圓直徑AE的延長線與大圓交于點B,點D在大圓上,BD與小圓相切于點F,AF的延長線與大圓相交于點C,且CE⊥BD.找出圖中相等的線段并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a是不為1的有理數(shù),我們把 稱為a的差倒數(shù).如:2的差倒數(shù)是=﹣1,﹣1的差倒數(shù)是.已知a1=﹣,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推.
(1)分別求出a2,a3,a4的值;
(2)求a1+a2+a3+…+a3600的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組式子中:(1)x2y與﹣xy2;(2)0.5a2b與0.5a2c;(3)3b與3abc;(4)﹣0.1mn2與mn2中是同類項的有_____(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖是由10個同樣大小棱長為1的小正方體搭成的幾何體,請分別畫出它的主視圖、左視圖和俯視圖
(2)這個組合幾何體的表面積為 個平方單位(包括底面積)
(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最多要 個小立方體.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com