如圖所示,OABC在直角坐標(biāo)系內(nèi)各坐標(biāo)分別為O(0,0)A(4,0)、B(6,2)C(2,2),將O、AB、C四點(diǎn)坐標(biāo)的橫坐標(biāo)和縱坐標(biāo)分別加3,再將所得到的點(diǎn)用線段依次連接起來.所得到的圖案與原來的圖案相比有什么變化?

答案:
解析:

所得到的圖案向右且向上平移了3個(gè)單位長度.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

矩形OABC在平面直角坐標(biāo)系中位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0精英家教網(wǎng)),C(0,-3),直線y=-
3
4
x與BC邊相交于D點(diǎn).
(1)求點(diǎn)D的坐標(biāo);
(2)若拋物線y=ax2-
9
4
x經(jīng)過點(diǎn)A,試確定此拋物線的表達(dá)式;
(3)設(shè)(2)中的拋物線的對(duì)稱軸與直線OD交于點(diǎn)M,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),以P、O、M為頂點(diǎn)的三角形與△OCD相似,求符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度移動(dòng).過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得以C、P、Q為頂點(diǎn)的三角形與△OAB相似?若存在,求出t的值;若不存在,請(qǐng)說明理由.
(4)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖①所示,四個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),點(diǎn)P在線段OA上(不與O、A重合),將紙片折疊,使點(diǎn)A落在射線AB上(記為點(diǎn)A’),折痕PQ與射線AB交于點(diǎn)Q,設(shè)OP=x,折疊后紙片重疊部分的面積為y.(圖②供探索用)
(1)求∠OAB的度數(shù);
(2)求y與x的函數(shù)關(guān)系式,并寫出對(duì)應(yīng)的x的取值范圍;
(3)y存在最大值嗎?若存在,求出這個(gè)最大值,并求此時(shí)x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖所示:OABC是正方形,OD∥AC.|AD|=|AC|,若|OA|=1,則D的坐標(biāo)是


  1. A.
    數(shù)學(xué)公式,數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式,數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式,數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式,數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案