如圖,在△ABC中,AB=AC,BF=CD,BD=CE.若∠A=40°,則∠FDE=
70
70
°.
分析:首先得出△BDF≌△CED,進(jìn)而得出∠FDB=∠DEC,再利用三角形內(nèi)角和定理得出∠FDE=∠C即可得出答案.
解答:解:∵AB=AC,
∴∠B=∠C,
在△BDF和△CED中,
BF=CD
∠B=∠C
BD=CE
,
∴△BDF≌△CED(SAS),
∴∠FDB=∠DEC,
∵∠A=40°,∠B=∠C,
∴∠B=∠C=70°,
∵∠BDF+∠EDC+∠FDE=∠C+∠EDC+∠DEC=180°
∴∠FDE=∠C=70°.
故答案為:70°.
點(diǎn)評:此題主要考查了全等三角形的判定與性質(zhì)和三角形內(nèi)角和定理等知識,根據(jù)已知得出△BDF≌△CED是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案