已知:在△ABC中,CD是AB邊上的高,∠DEB=∠ACB,∠1+∠2=180°.試判斷FG與AB的位置關(guān)系,并說(shuō)明理由.
解:FG⊥AB,理由:
∵∠DEB=∠ACB(已知)
DE∥AC
DE∥AC
(同位角相等,兩直線平行)
∴∠1=∠3(
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等

∵∠1+∠2=180°(已知)
∴∠3+∠2=180°(
等量代換
等量代換

FG∥CD
FG∥CD
(同旁內(nèi)角互補(bǔ),兩直線平行)
∵CD是AB上的高(已知)
∴∠CDA=90°(
三角形高的定義
三角形高的定義

∠FGD
∠FGD
=∠CDA(兩直線平行,同位角相等)
∴FG⊥AB(
垂直的定義
垂直的定義
分析:由∠DEB=∠ACB,根據(jù)平行線的判定定理得到DE∥AC,則∠1=∠3,而∠1+∠2=180°,得到∠3+∠2=180°,根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行得到FG∥CD,再根據(jù)性質(zhì)得到∠FGD=∠CDA,然后利用三角形高得定義有∠CDA=90°,則∠FGD=90°,然后根據(jù)垂直的定義即可得到FG⊥AB.
解答:解:FG⊥AB,理由如下:
∵∠DEB=∠ACB,
∴DE∥AC,
∴∠1=∠3,
∵∠1+∠2=180°,
而∠1+∠2=180°,
∴∠3+∠2=180°,
∴FG∥CD,
∴∠FGD=∠CDA,
∵CD是AB上的高,
∴∠CDA=90°,
∴∠FGD=90°,
∴FG⊥AB.
故答案為DE∥AC;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;FG∥CD;三角形高的定義;∠FGD;垂直的定義.
點(diǎn)評(píng):本題考查了平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角相等;同旁內(nèi)角互補(bǔ),兩直線平行.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知:在△ABC中AB=AC,點(diǎn)D在CB的延長(zhǎng)線上.
求證:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)化簡(jiǎn):(a-
1
a
)÷
a2-2a+1
a
;
(2)已知:在△ABC中,AB=AC.
①設(shè)△ABC的周長(zhǎng)為7,BC=y,AB=x(2≤x≤3).寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
②如圖,點(diǎn)D是線段BC上一點(diǎn),連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)M,ME∥AB交BC于點(diǎn)E,MF∥AC交BC于點(diǎn)F.求證:△MEF的周長(zhǎng)等于BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知,在△ABC中,AB=AC=x,BC=6,則腰長(zhǎng)x的取值范圍是
x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點(diǎn)E.∠B=38°,∠C=70°.
①求∠DAE的度數(shù);
②試寫(xiě)出∠DAE與∠B、∠C之間的一般等量關(guān)系式(只寫(xiě)結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案