如圖,等邊三角形ABC中,點D、E、F分別是BC、AC、AB上的點,且DEACEFAB,FDBC,垂足分別為點E、F、D. 則△DEF的面積與△ABC的面積之比等于   (     )

A.  ︰2         B.  1︰3               C. 2︰3          D. ︰3

 

 

【答案】

B

【解析】:∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,

∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,

∴∠C=∠FDE,

同理可得:∠B=∠DFE,∠A=DEF,

∴△DEF∽△CAB,

∴△DEF與△ABC的面積之比= ,

又∵△ABC為正三角形,

∴∠B=∠C=∠A=60°,△EFD是等邊三角形,

∴EF=DE=DF,

又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,

∴△AEF≌△CDE≌△BFD,

∴BF=AE=CD,AF=BD=DC,

在Rt△DEC中,

DE=DC×sin∠C=  DC,EC=cos∠C×DC=  DC,

又∵DC+BD=BC=AC=  DC,

,

∴△DEF與△ABC的面積之比等于:==1:3.

故選B.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形AOB的頂點A在反比例函數(shù)y=
3
x
(x>0)的圖象上,點B在x軸上.
(1)求點B的坐標(biāo);
(2)求直線AB的函數(shù)表示式;
(3)在y軸上是否存在點P,使△OAP是等腰三角形?若存在,直接把符合條件的點P的坐標(biāo)都寫出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩動點,且總使AD=BE,AE與CD交于點F,AG⊥CD于點G,則
FG
AF
=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等邊三角形ABC的邊長為6,點D,E分別在邊AB,AC上,且AD=AE=2.若點F從點B開始以每秒1個單位長的速度沿射線BC方向運動,設(shè)點F運動的時間為t秒.當(dāng)t>0時,直線FD與過點A且平行于BC的直線相交于點G,GE的延長線與BC的延長線相交于點H,AB與GH相交于點O.
(1)設(shè)△EGA的面積為S,寫出S與t的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時,AB⊥GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊三角形ABC的邊長為a,若D、E、F、G分別為AB、AC、CD、BF的中點,則△BEG的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

已知:如圖,在等邊三角形AB,AD=BE=CF,D,E,F不是各邊的中點,AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個三角形全等,在圖中全等三角形的組數(shù)是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步練習(xí)冊答案