【題目】如圖,拋物線y=x2+bx+c過點A(3,0),B(1,0),交y軸于點C,點P是該拋物線上一動點,點P從C點沿拋物線向A點運動(點P不與點A重合),過點P作PD∥y軸交直線AC于點D.
(1)求拋物線的解析式;
(2)求點P在運動的過程中線段PD長度的最大值;
(3)在拋物線對稱軸上是否存在點M,使|MA-MC|最大?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.
【答案】(1)拋物線的解析式為y=x2-4x+3.(2)當(dāng)x=時,線段PD的長度有最大值.(3)存在點M(2,-3),使|MA-MC|最大.
【解析】試題分析:(1)把點A、B的坐標(biāo)代入拋物線解析式,解方程組得到b、c的值,即可得解;
(2)求出點C的坐標(biāo),再利用待定系數(shù)法求出直線AC的解析式,再根據(jù)拋物線解析式設(shè)出點P的坐標(biāo),然后表示出PD的長度,再根據(jù)二次函數(shù)的最值問題解答;
(3)根據(jù)拋物線的對稱性可知MA=MB,再根據(jù)三角形的任意兩邊之差小于第三邊可知點M為直線CB與對稱軸交點時,|MA﹣MC|最大,然后利用待定系數(shù)法求出直線BC的解析式,再求解即可.
試題解析:(1)∵拋物線y=x2+bx+c過點A(3,0),B(1,0),
∴,
解得,
∴拋物線解析式為y=x2﹣4x+3;
(2)令x=0,則y=3,
∴點C(0,3),
則直線AC的解析式為y=﹣x+3,
設(shè)點P(x,x2﹣4x+3),
∵PD∥y軸,
∴點D(x,﹣x+3),
∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,
∵a=﹣1<0,
∴當(dāng)x=時,線段PD的長度有最大值;
(3)由拋物線的對稱性,對稱軸垂直平分AB,
∴MA=MB,由三角形的三邊關(guān)系,|MA﹣MC|<BC,
∴當(dāng)M、B、C三點共線時,|MA﹣MC|最大,為BC的長度,
設(shè)直線BC的解析式為y=kx+b(k≠0),
則,
解得,
∴直線BC的解析式為y=﹣3x+3,
∵拋物線y=x2﹣4x+3的對稱軸為直線x=2,
∴當(dāng)x=2時,y=﹣3×2+3=﹣3,
∴點M(2,﹣3),
即,拋物線對稱軸上存在點M(2,﹣3),使|MA﹣MC|最大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=x2+(k2﹣3k﹣4)x+2k的圖象與x軸從左到右交于A,B兩點,且這兩點關(guān)于原點對稱.
(1)求k的值;
(2)在(1)的條件下,若反比例函數(shù)y=的圖象與二次函數(shù)y=x2+(k2﹣3k﹣4)x+2k的圖象從左到右交于Q,R,S三點,且點Q的坐標(biāo)為(﹣1,﹣1),點R(xR,yR),S(xs,ys)中的縱坐標(biāo)yR,ys分別是一元二次方程y2+my﹣1=0的解,求四邊形AQBS的面積S四邊形AQBS;
(3)在(1),(2)的條件下,在x軸下方是否存在二次函數(shù)y=x2+(k2﹣3k﹣4)x+2k圖象上的點P使得S△PAB=2S△RAB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上表示點A的數(shù)是最大的負(fù)整數(shù),則與點A相距3個單位長度的點表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算(2a3b2)2÷ab2 的結(jié)果為( )
A. 2a2 B. 2a5b2 C. 4a2b2 D. 4a5b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是關(guān)于x的二次函數(shù),求:
(1)滿足條件m的值。
(2)m為何值時,拋物線有最底點?求出這個最底點的坐標(biāo),這時為何值時y隨的增大而增大?
(3)m為何值時,拋物線有最大值?最大值是多少?這時為何值時,y隨的增大而減小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com