【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,610這樣的數(shù)稱(chēng)為三角形數(shù),而把1,4916這樣的數(shù)稱(chēng)為正方形數(shù).從圖中可以發(fā)現(xiàn),任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是( 。

A. 361521 B. 25916 C. 13310 D. 491831

【答案】A

【解析】

題目中三角形數(shù)的規(guī)律為1、3、6、10、15、21…“正方形數(shù)的規(guī)律為1、4、9、16、25…,根據(jù)題目已知條件:從圖中可以發(fā)現(xiàn),任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.可得出最后結(jié)果.

這些三角形數(shù)的規(guī)律是1,3,6,10,15,21,28,36,45,…,

且正方形數(shù)是這串?dāng)?shù)中相鄰兩數(shù)之和,

很容易看到:恰有15+21=36,

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程式應(yīng)用題.

天河食品公司收購(gòu)了200噸新鮮柿子,保質(zhì)期15天,該公司有兩種加工技術(shù),一種是加工為普通柿餅,另一種是加工為特級(jí)霜降柿餅,也可以不需加工直接銷(xiāo)售.相關(guān)信息見(jiàn)表:

品種

每天可加工數(shù)量(噸)

每噸獲利(元)

新鮮柿子

不需加工

1000

普通柿餅

16

5000

特級(jí)霜降柿餅

8

8000

由于生產(chǎn)條件的限制,兩種加工方式不能同時(shí)進(jìn)行,為此公司研制了兩種可行方案:

方案1:盡可能多地生產(chǎn)為特級(jí)霜降柿餅,沒(méi)來(lái)得及加工的新鮮柿子,在市場(chǎng)上直接銷(xiāo)售;

方案2:先將部分新鮮柿子加工為特級(jí)霜降柿餅,再將剩余的新鮮柿子加工為普通柿餅,恰好15天完成.

請(qǐng)問(wèn):哪種方案獲利更多?獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的頂點(diǎn)都在菱形的邊上.設(shè)AE=AH=x0x1),矩形的面積為S

1)求S關(guān)于x的函數(shù)解析式;

2)當(dāng)EFGH是正方形時(shí),求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、B、C是數(shù)軸上三點(diǎn),O為原點(diǎn).點(diǎn)C對(duì)應(yīng)的數(shù)為6BC4,AB12

1)求點(diǎn)A、B對(duì)應(yīng)的數(shù);

2)動(dòng)點(diǎn)PQ分別同時(shí)從A、C出發(fā),分別以每秒6個(gè)單位和3個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).MAP的中點(diǎn),NCQ上,且CNCQ,設(shè)運(yùn)動(dòng)時(shí)間為tt0).

①求點(diǎn)MN對(duì)應(yīng)的數(shù)(用含t的式子表示); t為何值時(shí),OM2BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某點(diǎn)從數(shù)軸上的A點(diǎn)出發(fā),第1次向右移動(dòng)1個(gè)單位長(zhǎng)度至B點(diǎn),第2次從B點(diǎn)向左移動(dòng)2個(gè)單位長(zhǎng)度至C點(diǎn),第3次從C點(diǎn)向右移動(dòng)3個(gè)單位長(zhǎng)度至D點(diǎn),第4次從D點(diǎn)向左移動(dòng)4個(gè)單位長(zhǎng)度至E點(diǎn),,依此類(lèi)推,經(jīng)過(guò)_________次移動(dòng)后該點(diǎn)到原點(diǎn)的距離為2019個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】恰逢“植樹(shù)節(jié)”,師梅與博小兩所學(xué)校決定購(gòu)進(jìn)A,B兩種樹(shù)苗進(jìn)行種植,已知兩所學(xué)校共花費(fèi)了390元購(gòu)進(jìn)了50棵樹(shù)苗,其中A樹(shù)苗10元一棵,B樹(shù)苗5元一棵.現(xiàn)在要將50棵樹(shù)苗運(yùn)往兩所學(xué)校,其運(yùn)費(fèi)如下表所示:

樹(shù)苗類(lèi)型

師梅(元/棵)

博。ㄔ/棵)

A

8

10

B

6

5

1)求這50棵樹(shù)苗中A、B樹(shù)苗各多少棵?

2)現(xiàn)師梅需要30棵樹(shù)苗,博小需要20棵樹(shù)苗,設(shè)師梅需要A樹(shù)苗為x棵,運(yùn)往師梅和博小的總運(yùn)費(fèi)為y,求yx的函數(shù)解析式.

3)在(2)的條件下,若運(yùn)往師梅的運(yùn)費(fèi)不超過(guò)200元,請(qǐng)你寫(xiě)出使總運(yùn)費(fèi)最少的樹(shù)苗分配方案,并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時(shí)發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1x1,y1P2x2,y2,可通過(guò)構(gòu)造直角三角形利用圖1得到結(jié)論:,他還利用圖2證明了線段P1P2的中點(diǎn)Px,y的坐標(biāo)公式:

1)已知點(diǎn)M2,1,N2,5,則線段MN長(zhǎng)度為 ;

2)請(qǐng)求出以點(diǎn)A2,2,B2,0,C3,1D為頂點(diǎn)的平行四邊形頂點(diǎn)D的坐標(biāo);

3)如圖3OL滿足y2xx0,點(diǎn)P2,1OLx軸正半軸所夾的內(nèi)部一點(diǎn),請(qǐng)?jiān)?/span>OL、x軸上分別找出點(diǎn)E、F,使PEF的周長(zhǎng)最小,求出周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗從化,某中學(xué)七年級(jí)一班同學(xué)都積極參加了植樹(shù)活動(dòng),今年四月份該班同學(xué)的植樹(shù)情況部分如圖所示,且植樹(shù)2株的人數(shù)占32%.

(1)求該班的總?cè)藬?shù)、植樹(shù)株數(shù)的眾數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)若將該班同學(xué)的植樹(shù)人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖時(shí),求植樹(shù)3對(duì)應(yīng)扇形的圓心角的度數(shù);

(3)求從該班參加植樹(shù)的學(xué)生中任意抽取一名,其植樹(shù)株數(shù)超過(guò)該班植樹(shù)株數(shù)的平均數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).

(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫(huà)出平移后得到的△A1B1C1;

(2)把△A1B1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,在網(wǎng)格中畫(huà)出旋轉(zhuǎn)后的△A1B2C2;

(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案