(1)如圖,有四個直角三角形,在提供的三角形中,只有一刀剪下一個與原三角形相似的三角形,請在圖上畫出四種不同的裁剪方法(標出必要的記號);

(2)根據(jù)(1)的某種剪法,作為解決下列問題的突破口,先按裁剪法構(gòu)圖(作輔助線),后解決問題.
問題:在四邊形ABCD中,AB=2,CD=1,∠A=60°,∠B=∠D=90°,求BC和AD.

解:(1)如圖,作垂線或平行線;


(2)如圖,作DE⊥AB,CF⊥DE,垂足為E、F,
∵∠A=60°,∠B=∠D=90°,
∴∠BCD=360°-∠A-∠B-∠D=′120°,
在Rt△CDF中,CD=1,∠DCF=∠BCD-∠BCF=30°,
DF=CD•sin30°=,CF=CD•cos30°=;
∴BE=CF=,AE=AB-BE=2-;
在Rt△ADE中,∠ADE=90°-∠CDF=30°,
∴DE==2-
BC=EF=DE-DF=2-2,
AD==4-
分析:(1)如圖,分別作直角邊或斜邊的垂線,作斜邊的平行線,可得到與原三角形相似的三角形;
(2)分別作DE⊥AB,CF⊥DE,垂足為E、F,將原四邊形剪切為兩個30°的直角三角形和一個矩形,再解直角三角形.
點評:圖形相似的作圖方法,割補法解決不規(guī)則圖象的有關(guān)計算問題,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

22、本題四個矩形的水平方向的邊長為a,豎直方向的邊長為b.在圖(1)中,將線段A1A2向右平移1個單位到B1B2,得到封閉圖形A1A2B2B1(即陰影部分);在圖(2)中,將折線A1A2A3向右平移1個單位到B1B2B3,得到封閉圖形A1A2A3B3B2B1(陰影部分).
(1)在圖(3)中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影;
(2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:S1=
ab-b
,S2=
ab-b
,S3=
ab-b
,然后在下面空白處在圖(2)和圖(3)中任選一個圖形說明你求面積的思維過程;
(3)聯(lián)想與探索:如圖(4),在一塊矩形草地上,有一條彎曲的柏油路(路的任何地方的水平寬度都是1個單位)請你猜想空白部分表示的草地面積是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們知道過兩點有且只有一條直線.
閱讀下面文字,分析其內(nèi)在涵義,然后回答問題:
如圖,同一平面中,任意三點不在同一直線上的四個點A、B、C、D,過每兩個點畫一條直線,一共可以畫出多少條直線呢?我們可以這樣來分析:
過A點可以畫出三條通過其他三點的直線,過B點也可以畫出三條通過其他三點的直線.同樣,過C點、D點也分別可以畫出三條通過其他三點的直線.這樣,一共得到3×4=12條直線,但其中每條直線都重復過一次,如直線AB和直線BA是一條直線,因此,圖中一共有
3×42
=6條直線.請你仿照上面分析方法,回答下面問題:
精英家教網(wǎng)
(1)若平面上有五個點A、B、C、D、E,其中任何三點都不在一條直線上,過每兩點畫一條直線,一共可以畫出
 
條直線;
若平面上有符合上述條件的六個點,一共可以畫出
 
條直線;
若平面上有符合上述條件的n個點,一共可以畫出
 
條直線(用含n的式子表示).
(2)若我校初中24個班之間進行籃球比賽,第一階段采用單循環(huán)比賽(每兩個班之間比賽一場),類比上面的分析計算第一階段比賽的總場次是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一個多面體的面數(shù)(a)和這個多面體表面展開后得到的平面圖形的頂點數(shù)(b),棱數(shù)(c)之間存在一定規(guī)律,如圖1是正三棱柱的表面展開圖,它原有5個面,展開后有10個頂點(重合的頂點只算一個),14條棱.

【探索發(fā)現(xiàn)】
(1)請在圖2中用實線畫出立方體的一種表面展開圖;
(2)請根據(jù)圖2你所畫的圖和圖3的四棱錐表面展開圖填寫下表:
多面體 面數(shù)a 展開圖的頂點數(shù)b 展開圖的棱數(shù)c
直三棱柱 5 10 14
四棱錐
5
5
8 12
立方體
6
6
14
14
19
19
(3)發(fā)現(xiàn):多面體的面數(shù)(a)、表面展開圖的頂點數(shù)(b)、棱數(shù)(c)之間存在的關(guān)系式是
a+b-c=1
a+b-c=1
;
【解決問題】
(4)已知一個多面體表面展開圖有17條棱,且展開圖的頂點數(shù)比原多面體的面數(shù)多2,則這個多面體的面數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

圖形的操作過程:(本題中四個矩形的水平方向的邊長均為a,豎直方向邊長均為b)

在圖①中,將線段A1A2向右平移1個單位到B1B2,得到封閉圖形A1A2B2B1(即陰影部分);
在圖②中,將折線A1A2A3向右平移1個單位到B1B2B3,得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖③中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影;
(2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:S1=
ab-b
ab-b
,S2=
ab-b
ab-b
,S3=
ab-b
ab-b

(3)聯(lián)想與探索:
如圖④在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草地面積是多少并說明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤A、B,轉(zhuǎn)盤A被均勻地分成4等份,每份分別

標上1、2、3、4四個數(shù)字;轉(zhuǎn)盤B被均勻地分成6等份,每份分別標上1、2、3、4、

5、6六個數(shù)字.有人為甲、乙兩人設計了一個游戲,其規(guī)則如下:

 、磐瑫r自由轉(zhuǎn)動轉(zhuǎn)盤A與B;

⑵轉(zhuǎn)盤停止后,指針各指向一個數(shù)字(如果指針恰好指在分格線上,那么重轉(zhuǎn)一次,直

到指針停留在某一數(shù)字為止),用所指的兩個數(shù)字作乘積,如果得到的積是偶數(shù),那

么甲勝;如果得到的積是奇數(shù),那么乙勝(如轉(zhuǎn)盤A指針指向3,轉(zhuǎn)盤B指針指向5,3×5

=15,按規(guī)則乙勝)。

你認為這樣的規(guī)則是否公平?請說明理由;如果不公平,請你設計一個公平的規(guī)則,并說明理由.

  

查看答案和解析>>

同步練習冊答案