【題目】如圖,□ABCD中,AB:BC=3:2,∠DCB=60°,點E在AB上,BE=2AE,點F為BC的中點,DP⊥AF,DQ⊥CE,則DP:DQ=( )
A.3:4B.1:1C.:D.3:
【答案】C
【解析】
連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,根據三角形的面積和平行四邊形的面積得出S△DEC=S△DFA=S平行四邊形ABCD,求出AF×DP=CE×DQ,設AB=3a,BC=2a,則BF=a,BE=2a,BN=a,BM=a,FN=a,CM=a,求出AF=a,CE=a,代入求出即可.
解:連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,
∵根據三角形的面積和平行四邊形的面積得:S△DEC=S△DFA=S平行四邊形ABCD,
即AF×DP=CE×DQ,
∴AF×DP=CE×DQ,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∵∠DCB=60°,
∴∠CBN=∠DCB=60°,
∴∠BFN=∠MCB=30°,
∵AB:BC=3:2,
∴設AB=3a,BC=2a,
∵AE:EB=1:2,F是BC的中點,
∴BF=a,BE=2a,
∴BN=a,BM=a,
由勾股定理得:FN=a,CM=a,
AF=,
CE=,
∴·DP=·DQ,
∴DP:DQ=:.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個數表示左右方向,第二個數表示上下方向.
(1)圖中A→C( , ),B→C( , ),C→ (+1, );
(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;
(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應記為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為測山高,在點A處測得山頂D的仰角為30°,從點A向山的方向前進140米到達點B,在B處測得山頂D的仰角為60°(如圖①).
(1)在所給的圖②中尺規(guī)作圖:過點D作DC⊥AB,交AB的延長線于點C(保留作圖痕跡);
(2)山高DC是多少(結果保留根號形式)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知OA⊥OB,點O為垂足,OC是∠AOB內任意一條射線,OB,OD分別平分∠COD,∠BOE,下列結論:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC與∠BOD互余,其中正確的有______(只填寫正確結論的序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“節(jié)能減排,做環(huán)保小衛(wèi)士”活動中,小明對兩種照明燈的使用情況進行了調查,得出如表所示的數據:
功率 | 使用壽命 | 價格 | |
普通白熾燈 | 瓦(即千瓦) | 小時 | 元/盞 |
優(yōu)質節(jié)能燈 | 瓦(即千瓦) | 小時 | 元/盞 |
已知這兩種燈的照明效果一樣,小明家所在地的電價是每度元.(注:用電度數功率(千瓦)時間(小時),費用燈的售價電費);如:若選用一盞普通白熾燈照明小時,那么它的費用為(元),請解決以下問題:
(1)在白熾燈的使用壽命內,設照明時間為小時,請用含的代數式分別表示用一盞白熾燈的費用,(元)和一盞節(jié)能燈的費用(元);
(2)在白熾燈的使用壽命內,照明多少小時時,使用這兩種燈的費用相等?
(3)如果計劃照明小時,購買哪一種燈更省錢?請你通過計算說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB=AC,DE垂直平分AB交AC、AB于E、D兩點,若AB=12cm,BC=10cm,∠A=50°,求△BCE的周長和∠EBC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為(0,4),線段的位置如圖所示,其中點的坐標為(,),點的坐標為(3,).
(1)將線段平移得到線段,其中點的對應點為,點的對應點為點.
①點平移到點的過程可以是:先向 平移 個單位長度,再向 平移 個單位長度;
②點的坐標為 .
(2)在(1)的條件下,若點的坐標為(4,0),連接,畫出圖形并求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數為( 。
A. 115° B. 120° C. 125° D. 130°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別是邊BC,AC上的中點,連接DE,并延長DE至點F,使EF=ED,連接AD,AF,BF,CF,線段AD與BF相交于點O,過點D作DG⊥BF,垂足為點G.
(1)求證:四邊形ABDF是平行四邊形;
(2)當時,試判斷四邊形ADCF的形狀,并說明理由;
(3)若∠CBF=2∠ABF,求證:AF=2OG.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com