【題目】如圖,□ABCD中,AB:BC=3:2,∠DCB=60°,點(diǎn)EAB上,BE=2AE,點(diǎn)FBC的中點(diǎn),DPAF,DQCE,則DP:DQ=

A.3:4B.1:1C.D.3

【答案】C

【解析】

連接DE、DF,過FFNABN,過CCMABM,根據(jù)三角形的面積和平行四邊形的面積得出SDECSDFAS平行四邊形ABCD,求出AF×DPCE×DQ,設(shè)AB3aBC2a,則BFaBE2a,BNa,BMaFNa,CMa,求出AFa,CEa,代入求出即可.

解:連接DE、DF,過FFNABN,過CCMABM,

∵根據(jù)三角形的面積和平行四邊形的面積得:SDECSDFAS平行四邊形ABCD

AF×DPCE×DQ,

AF×DPCE×DQ

∵四邊形ABCD是平行四邊形,

ADBC

∵∠DCB60°,

∴∠CBN=∠DCB60°

∴∠BFN=∠MCB30°,

ABBC32

∴設(shè)AB3a,BC2a,

AEEB12FBC的中點(diǎn),

BFa,BE2a,

BNa,BMa,

由勾股定理得:FNaCMa,

AF

CE,

·DP·DQ

DPDQ

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運(yùn)動(dòng).它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從AB記為:A→B(+1,+4),從BA記為:B→A(-1,-4),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.

(1)圖中A→C( , ),B→C( , ),C→ (+1, );

(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請?jiān)趫D中標(biāo)出P的位置;

(3)若這只甲蟲的行走路線為A→B→C→D,請計(jì)算該甲蟲走過的路程;

(4)若圖中另有兩個(gè)格點(diǎn)M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為測山高,在點(diǎn)A處測得山頂D的仰角為30°,從點(diǎn)A向山的方向前進(jìn)140米到達(dá)點(diǎn)B,在B處測得山頂D的仰角為60°(如圖).

1)在所給的圖中尺規(guī)作圖:過點(diǎn)DDC⊥AB,交AB的延長線于點(diǎn)C(保留作圖痕跡);

2)山高DC是多少(結(jié)果保留根號(hào)形式)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OAOB,點(diǎn)O為垂足,OC是∠AOB內(nèi)任意一條射線,OB,OD分別平分∠COD,∠BOE,下列結(jié)論:①∠COD=BOE;②∠COE=3BOD;③∠BOE=AOC;④∠AOC與∠BOD互余,其中正確的有______(只填寫正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“節(jié)能減排,做環(huán)保小衛(wèi)士”活動(dòng)中,小明對兩種照明燈的使用情況進(jìn)行了調(diào)查,得出如表所示的數(shù)據(jù):

功率

使用壽命

價(jià)格

普通白熾燈

瓦(即千瓦)

小時(shí)

/

優(yōu)質(zhì)節(jié)能燈

瓦(即千瓦)

小時(shí)

/

已知這兩種燈的照明效果一樣,小明家所在地的電價(jià)是每度.(注:用電度數(shù)功率(千瓦)時(shí)間(小時(shí)),費(fèi)用燈的售價(jià)電費(fèi));如:若選用一盞普通白熾燈照明小時(shí),那么它的費(fèi)用為(元),請解決以下問題:

1)在白熾燈的使用壽命內(nèi),設(shè)照明時(shí)間為小時(shí),請用含的代數(shù)式分別表示用一盞白熾燈的費(fèi)用,(元)和一盞節(jié)能燈的費(fèi)用(元);

2)在白熾燈的使用壽命內(nèi),照明多少小時(shí)時(shí),使用這兩種燈的費(fèi)用相等?

3)如果計(jì)劃照明小時(shí),購買哪一種燈更省錢?請你通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,DE垂直平分ABAC、ABE、D兩點(diǎn),若AB=12cm,BC=10cm,A=50°,求BCE的周長和∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(0,4),線段的位置如圖所示,其中點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(3).

(1)將線段平移得到線段,其中點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn).

①點(diǎn)平移到點(diǎn)的過程可以是:先向 平移 個(gè)單位長度,再向 平移 個(gè)單位長度;

②點(diǎn)的坐標(biāo)為 .

(2)(1)的條件下,若點(diǎn)的坐標(biāo)為(4,0),連接,畫出圖形并求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為( 。

A. 115° B. 120° C. 125° D. 130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E分別是邊BC,AC上的中點(diǎn),連接DE,并延長DE至點(diǎn)F,使EF=ED,連接AD,AFBF,CF,線段ADBF相交于點(diǎn)O,過點(diǎn)DDGBF,垂足為點(diǎn)G.

(1)求證:四邊形ABDF是平行四邊形;

(2)當(dāng)時(shí),試判斷四邊形ADCF的形狀,并說明理由;

(3)若∠CBF=2ABF,求證:AF=2OG

查看答案和解析>>

同步練習(xí)冊答案