精英家教網 > 初中數學 > 題目詳情
(2010•嘉興)如圖,已知菱形ABCD的一個內角∠BAD=80°,對角線AC、BD相交于點O,點E在AB上且BE=BO,則∠BEO=    度.
【答案】分析:因為AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根據三角形內角和定理求解.
解答:解:∵ABCD是菱形,∴AB=AD.∴∠ABD=∠ADB.
∵∠BAD=80°,∴∠ABD=×(180°-80°)=50°.
又∵BE=BO,
∴∠BEO=∠BOE=×(180°-50°)=65°.
故答案為:65.
點評:此題考查了菱形的性質和等腰三角形的性質以及三角形內角和定理.屬基礎題.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年4月福建省泉州市北師大泉州附中中考數學模擬試卷(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點A,交y軸于點B.
(1)求A、B兩點的坐標,并求直線AB的解析式;
(2)設P(x,y)(x>0)是直線y=x上的一點,Q是OP的中點(O是原點),以PQ為對角線作正方形PEQF,若正方形PEQF與直線AB有公共點,求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關于x的函數解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數學 來源:2011年浙江省杭州市中考數學模擬試卷(33)(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點A,交y軸于點B.
(1)求A、B兩點的坐標,并求直線AB的解析式;
(2)設P(x,y)(x>0)是直線y=x上的一點,Q是OP的中點(O是原點),以PQ為對角線作正方形PEQF,若正方形PEQF與直線AB有公共點,求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關于x的函數解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數學 來源:2011年廣東省茂名市化州市文樓中學中考數學一模試卷(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點A,交y軸于點B.
(1)求A、B兩點的坐標,并求直線AB的解析式;
(2)設P(x,y)(x>0)是直線y=x上的一點,Q是OP的中點(O是原點),以PQ為對角線作正方形PEQF,若正方形PEQF與直線AB有公共點,求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關于x的函數解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數學 來源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學中考數學二模試卷(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點A,交y軸于點B.
(1)求A、B兩點的坐標,并求直線AB的解析式;
(2)設P(x,y)(x>0)是直線y=x上的一點,Q是OP的中點(O是原點),以PQ為對角線作正方形PEQF,若正方形PEQF與直線AB有公共點,求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關于x的函數解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(09)(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點A,交y軸于點B.
(1)求A、B兩點的坐標,并求直線AB的解析式;
(2)設P(x,y)(x>0)是直線y=x上的一點,Q是OP的中點(O是原點),以PQ為對角線作正方形PEQF,若正方形PEQF與直線AB有公共點,求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關于x的函數解析式,并探究S的最大值.

查看答案和解析>>

同步練習冊答案