【題目】如圖,動點P從點A出發(fā),沿線段AB運動至點B后,立即按原路返回,點P在運動過程中速度不變,則以點B為圓心,線段BP長為半徑的圓的面積S與點P的運動時間t的函數(shù)圖象大致為( )

A. B. C. D.

【答案】B

【解析】分析動點P的運動過程,采用定量分析手段,求出S與t的函數(shù)關系式,根據(jù)關系式可以得出結論.

解:不妨設線段AB長度為1個單位,點P的運動速度為1個單位,則:

(1)當點P在A→B段運動時,PB=1-t,S=π(1-t)2(0≤t<1);

(2)當點P在B→A段運動時,PB=t-1,S=π(t-1)2(1≤t≤2).

綜上,整個運動過程中,S與t的函數(shù)關系式為:S=π(t-1)2(0≤t≤2),

這是一個二次函數(shù),其圖象為開口向上的一段拋物線.結合題中各選項,只有B符合要求.

故選B.

“點睛”本題結合動點問題考查了二次函數(shù)的圖象.解題過程中求出了函數(shù)關系式,這是定量的分析方法,適用于本題,如果僅僅用定性分析方法則難以作出正確選擇.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,ABBC,AB=3.E為射線 BC上一個動點,連接AE,將ABE沿AE折疊,點B落在點B′處,過點B′AD的垂線,分別交AD,BC于點M,N.當點B′為線段MN的三等分點時,BE的長為__________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年第一季度,泰州市共完成工業(yè)投資22300000000元,22300000000這個數(shù)可用科學記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將△ABC繞O點順時針旋轉50°得△A1B1C1(A、B分別對應A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段a2cm,b8cm,它們的比例中項c是(

A.16cmB.4cmC.±4cmD.±16cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我區(qū)注重城市綠化提高市民生活質(zhì)量,新建林蔭公園計劃購買甲、乙兩種樹苗共800株,甲種樹苗每株12元,乙種樹苗每株15元.相關資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購買這兩種樹苗共用去10500元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應如何選購樹苗,使購買樹苗的費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC,AC3cmACB90°,ABC60°,將ABC繞點B順時針旋轉至ABC,點C′在直線AB上,則邊AC掃過區(qū)域(圖中陰影部分)的面積為____________cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(10,0),(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,A=ABC=90°,AD=10cm,BC=30cm,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F.

(1)求證:四邊形BDFC是平行四邊形;

(2)若BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

同步練習冊答案