【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,AF平分∠BAD交BC于點E,交DC的延長線于點F,BG⊥AF于點G,BG=4,EF=AE,則△CEF的周長為__.
【答案】8
【解析】
判斷出△ADF是等腰三角形,△ABE是等腰三角形,DF的長度,繼而得到EC的長度,在Rt△BGE中求出GE,繼而得到AE,求出△ABE的周長,根據(jù)EF=AE,求出EF即可得出△EFC的周長.
∵在ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點E,
∴∠BAF=∠DAF,
∵AB∥DF,AD∥BC,
∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,
∴AB=BE=6,AD=DF=9,
∴△ADF是等腰三角形,△ABE是等腰三角形,
∵AD∥BC,
∴△EFC是等腰三角形,且FC=CE,
∴EC=FC=9﹣6=3,
在△ABG中,BG⊥AE,AB=6,BG=,
∴AG= =2,
∴AE=2AG=4,
又∵,
∴EF=2,
∴△CEF的周長為EF+CE+CF=2+3+3=8.
故答案為:8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠ACB=90°,BC=2,AC=4,點D在射線BC上,以點D為圓心,BD為半徑畫弧交邊AB于點E,過點E作EF⊥AB交邊AC于點F,射線ED交射線AC于點G.
(1)求證:△EFG∽△AEG;
(2)設(shè)FG=x,△EFG的面積為y,求y關(guān)于x的函數(shù)解析式并寫出定義域;
(3)聯(lián)結(jié)DF,當(dāng)△EFD是等腰三角形時,請直接寫出FG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求作圖.
(1)如圖1,平行四邊形ABCD,點E,F分別在邊AD,BC上,且AE=CF,連接EF.請你只用無刻度直尺畫出線段EF的中點O.(保留畫圖痕跡,不必說明理由).
(2)如圖2,平行四邊形ABCD,點E在邊AB上,請你只用無刻度直尺在邊CD上找一點F,使得四邊形AECF為平行四邊形,并說明理由.(注意:無刻度直尺只能過點畫線段或直線或射線).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點表示的數(shù)是點在點的右側(cè),且到點的距離是18;點在點與點之間,且到點的距離是到點距離的2倍.
(1)點表示的數(shù)是____________;點表示的數(shù)是_________;
(2)若點P從點出發(fā),沿數(shù)軸以每秒4個單位長度的速度向右勻速運動;同時,點Q從點B出發(fā),沿數(shù)軸以每秒2個單位長度的速度向左勻速運動。設(shè)運動時間為秒,在運動過程中,當(dāng)為何值時,點P與點Q之間的距離為6?
(3)在(2)的條件下,若點P與點C之間的距離表示為PC,點Q與點B之間的距離表示為在運動過程中,是否存在某一時刻使得?若存在,請求出此時點表示的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線: 與拋物線相交于點A(,7).
(1)求m,n的值;
(2)過點A作AB∥x軸交拋物線于點B,設(shè)拋物線與x軸交于點C、D(點C在點D的左側(cè)),求△BCD的面積;
(3)點E(t,0)為x軸上一個動點,過點E作平行于y軸的直線與直線和拋物線分別交于點P、Q.當(dāng)點P在點Q上方時,求線段PQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩車從A市去往B市,甲比乙出發(fā)了2個小時,甲到達(dá)B市后停留一段時間返回,乙到達(dá)B市后立即返回.甲車往返的速度都為40千米/時,乙車往返的速度都為20千米/時,下圖是兩車距A市的路程S(千米)與行駛時間t(小時)之間的函數(shù)圖象,請結(jié)合圖象回答下列問題:
(1)A、B兩市的距離是 千米,甲到B市后 小時乙到達(dá)B市;
(2)求甲車返回時的路程s(千米)與時間t(小時)之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)請直接寫出甲車從B市往回返后再經(jīng)過幾小時兩車相遇.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com