【題目】某商店銷售甲、乙兩種商品.現(xiàn)有如下信息:

1)請設(shè)計一張表格,并把上述信息中的已知數(shù)量填進去;

2)根據(jù)情境中的信息,提出一個問題,并用二元一次方程組解決這個問題.

【答案】1)設(shè)計如下表格.見解析;(2)答案不唯一,例如,甲、乙兩種商品零售單價分別是多少元?甲商品零售單價是每件2元,乙商品零售單價是每件3元.

【解析】

1)根據(jù)題意繪制表格,并把相關(guān)數(shù)據(jù)填入即可;

2)設(shè)甲商品零售單價為x/件,乙商品零售單價為y/件,根據(jù)題意列二元一次方程組并求解即可.

解:

1)可設(shè)計如下表格.

銷售單價(元/件)

數(shù)量(件)

金額(元)

甲商品

3

乙商品

2

合計

5

12

2)答案不唯一,例如,甲、乙兩種商品零售單價分別是多少元?

設(shè)甲商品零售單價為/件,乙商品零售單價為/件.

根據(jù)題意,得

解得 ;

答:甲商品零售單價是每件2元,乙商品零售單價是每件3元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根的判別式內(nèi)容:

=b2﹣4ac0一元二次方程_____;

=b2﹣4ac=0一元二次方程_____;

此時方程的兩個根為x1=x2=_____

=b2﹣4ac0一元二次方程_____

=b2﹣4ac0一元二次方程_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形中,,.點是直線上一個動點(不與點,重合),連接,在線段的延長線上取一點,使得.過點,交直線于點

1)如圖1,當點在線段上時,若,則_________

2)當點在線段的延長線上時,在圖2中依題意補全圖形,并判斷有怎樣的數(shù)量關(guān)系,寫出你的結(jié)論,并證明;

3)在點運動的過程中,直接寫出的數(shù)量關(guān)系為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點分別表示數(shù)1,則數(shù)軸上表示數(shù)的點應(yīng)落在______.(填“點的左邊”、“線段上”或“點的右邊”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將長方形ABCD按如圖所示沿EF所在直線折疊,點C落在AD上的點C′處,點D落在點D′.

(1)求證:△EFC′是等腰三角形.

(2)如果∠1=65°,求∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC中,BFCF是角平分線,DEBC,分別交AB、AC于點D、E,DE經(jīng)過點F.結(jié)論:①△BDFCEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長=AB+AC;BF=CF.其中正確的是______(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm,如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為每秒2cm1cm,F(xiàn)Q⊥BC,分別交AC、BC于點PQ,設(shè)運動時間為t秒(0<t<4).

(1)連接EF,若運動時間t=   時,EF⊥AC;

(2)連接EP,當△EPC的面積為3cm2時,求t的值;

(3)△EQP∽△ADC,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB

矩形的三邊AE,EDDB組成,已知河底ED是水平的,ED16m,AE8m,拋物線的頂點CED

距離是11m,以ED所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標系.

(1)求拋物線的解析式;

(2)已知從某時刻開始的40h內(nèi),水面與河底ED的距離h(單位:m)隨時間t(單位:h)的變化滿足函數(shù)

關(guān)系且當水面到頂點C的距離不大于5m時,需禁止船只通行,請通過計算說明:在這一時段內(nèi),需多少小時禁止船只通行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點O是等邊ABC內(nèi)的任一點,連接OA,OB,OC.

(1)如圖1,已知AOB=150°,BOC=120°,將BOC繞點C按順時針方向旋轉(zhuǎn)60°得ADC.

DAO的度數(shù)是 ;

②用等式表示線段OA,OB,OC之間的數(shù)量關(guān)系,并證明;

(2)設(shè)AOB=α,BOC=β.

①當α,β滿足什么關(guān)系時,OA+OB+OC有最小值?請在圖2中畫出符合條件的圖形,并說明理由;

②若等邊ABC的邊長為1,直接寫出OA+OB+OC的最小值.

查看答案和解析>>

同步練習(xí)冊答案