已知,如圖,直線y=
3
3
x+
3
與x軸、y軸分別交于A、B兩點(diǎn),⊙M經(jīng)過(guò)精英家教網(wǎng)原點(diǎn)O及A、B兩點(diǎn).
(1)求以O(shè)A、OB兩線段長(zhǎng)為根的一元二方程;
(2)C是⊙M上一點(diǎn),連接BC交OA于點(diǎn)D,若∠COD=∠CBO,寫(xiě)出經(jīng)過(guò)O、C、A三點(diǎn)的二次函數(shù)的解析式;
(3)若延長(zhǎng)BC到E,使DE=2,連接EA,試判斷直線EA與⊙M的位置關(guān)系,并說(shuō)明理由.
分析:(1)本題的關(guān)鍵是求出OA,OB的長(zhǎng),可根據(jù)過(guò)A,B兩點(diǎn)的直線解析式來(lái)得出A,B兩點(diǎn)的坐標(biāo),即可得出OA,OB的長(zhǎng).進(jìn)而可根據(jù)韋達(dá)定理得出所求的一元二次方程.
(2)本題要先求出C點(diǎn)的坐標(biāo),已知∠COD=∠CBO,那么C是弧OA的中點(diǎn),連接MC,可根據(jù)垂徑定理求出C點(diǎn)的坐標(biāo).而后根據(jù)O,A,C三點(diǎn)的坐標(biāo)即可得出拋物線的解析式.
(3)本題只需證EA⊥AB即可.在直角三角形OBD中,可求得∠BDO=60°,而AD=DE=2,由此可得出三角形ADE是等邊三角形,因此∠DAE=60°,而∠BAO=30°,由此可得出∠BAE=90°,即可得證.
解答:解:(1)∵直線y=
3
3
x+
3
與x軸、y軸分別交于A、B兩點(diǎn),
∴A(-3,0),B(0,
3

∴OA=3,OB=
3

以O(shè)A,OB兩線段長(zhǎng)為根的一元二次方程是:x2-(
3
+3)x+3
3
=0.

(2)∵∠COD=∠CBO,∠COD=∠CBA
∴∠CBA=∠CBO
∴弧AC=弧OC精英家教網(wǎng)
∵∠AOB=90°
∴AB為⊙M的直徑.
連接MC交OA于點(diǎn)G.
∴MC⊥OA.
∴OG=AG=
1
2
OA=
3
2

根據(jù)勾股定理得:MG=
AM2-AG2
=
3
2
,
∴MC=
1
2
AB=
1
2
OB2+OA2
=
1
2
(
3
)
2
+32
=
3

∴CG=MC-MG=
3
-
3
2
=
3
2

∴C(-
3
2
,-
3
2
).
設(shè)經(jīng)過(guò)O,C,A三點(diǎn)的二次函數(shù)的解析式為y=ax2+bx+c,依題意可得:
c=0
9
4
a-
3
2
b+c=-
3
2
9a-3b+c=0
,
解得:
a=
2
9
3
b=
2
3
3
c=0
,
因此拋物線的解析式為y=
2
3
9
x2+
2
3
3
x.
精英家教網(wǎng)
(3)直線EA與⊙M相切,理由如下:
在直角三角形OAB中,
∵OB=
3
,OA=3;
∴tan∠OAB=
3
3

∴∠OAB=30°,
∴∠OBA=60°,
∵∠COD=∠CBO,∠OCD=∠BCO,
∴△OCD∽△BCO,
∴∠CDO=∠BOC,又∠CDO=∠ADB,
∴∠ADB=∠COB,又∠BAD=∠BCO,
∴△ADB∽△COB,
∴∠ABD=∠CBO=
1
2
∠ABO,
∴∠OBC=30°.
∴∠ADE=∠BDO=60°.
在直角三角形BOD中,OD=OB•tan30°=
3
×
3
3
=1.
∴AD=2,又DE=2
∴△ADE為等邊三角形.
∴∠OAE=60°
∴∠BAE=30°+60°=90°
∴直線EA與⊙M相切.
點(diǎn)評(píng):本題主要考查一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)解析式的確定、垂徑定理等知識(shí)點(diǎn).考查學(xué)生綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•岳陽(yáng))已知:如圖,直線MN和⊙O切于點(diǎn)C,AB是⊙O的直徑,AE⊥MN,BF⊥MN且與⊙O交于點(diǎn)G,垂足分別是E、F,AC是⊙O的弦,
(1)求證:AB=AE+BF;
(2)令A(yù)E=m,EF=n,BF=p,證明:n2=4mp;
(3)設(shè)⊙O的半徑為5,AC=6,求以AE、BF的長(zhǎng)為根的一元二次方程;
(4)將直線MN向上平行移動(dòng)至與⊙O相交時(shí),m、n、p之間有什么關(guān)系?向下平行移動(dòng)至與⊙O相離時(shí),m、n、p之間又有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直線y=kx+b經(jīng)過(guò)點(diǎn)A、B.
求:(1)這個(gè)函數(shù)的解析式;
(2)當(dāng)x=4時(shí),y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直線y=kx+b與x軸交于點(diǎn)A,且與雙曲線y=
m
x
交于點(diǎn)B(4,2)和點(diǎn)C(n,-4). 
(1)求直線y=kx+b和雙曲線y=
m
x
的解析式;
(2)根據(jù)圖象寫(xiě)出關(guān)于x的不等式kx+b<
m
x
的解集;
(3)點(diǎn)D在直線y=kx+b上,設(shè)點(diǎn)D的縱坐標(biāo)為t(t>0).過(guò)點(diǎn)D作平行于x軸的直線交雙曲線y=
m
x
于點(diǎn)E.若△ADE的面積為
7
2
,請(qǐng)直接寫(xiě)出所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直線a∥b,∠1=(2x+10)°,∠2=(3x-5)°,那么∠1=
80
80
°.

查看答案和解析>>

同步練習(xí)冊(cè)答案