(2010•紹興)(1)如圖1,在正方形ABCD中,點E、F分別在邊BC、CD上,AE、BF 交于點O,∠AOF=90°.求證:BE=CF.
(2)如圖2,在正方形ABCD中,點E、H、F、G分別在邊AB、BC、CD、DA上,
EF、GH交于點O,∠FOH=90°,EF=4.求GH的長.
(3)已知點E、H、F、G分別在矩形ABCD的邊AB、BC、CD、DA上,EF、GH交于點O,∠FOH=90°,EF=4.直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個全等的正方形組成,則GH=______;
②如圖4,矩形ABCD由n個全等的正方形組成,則GH=______(用n的代數(shù)式表示).
【答案】分析:(1)關(guān)鍵是證出∠CBF=∠BAE,可利用同角的余角相等得出,從而結(jié)合已知條件,利用SAS可證△ABE≌△BCF,于是BE=CF;
(2)過A作AM∥GH,交BC于M,過B作BN∥EF,交CD于N,AMBN交于點O′,利用平行四邊形的判定,可知四邊形AMHG和四邊形BNFE是?,那么AM=GH,BN=EF,由于∠EOH=90°,結(jié)合平行線的性質(zhì),可知∠AO′N=90°,那么此題就轉(zhuǎn)化成(1),求△BCN≌△ABM即可;
(3)①若是兩個正方形,則GH=2EF=8;②若是n個正方形,那么GH=n•4=4n.
解答:(1)證明:如圖,∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠EAB+∠AEB=90°.
∵∠EOB=∠AOF=90°,
∴∠FBC+∠AEB=90°,
∴∠EAB=∠FBC,
∴△ABE≌△BCF,
∴BE=CF;

(2)解:方法1:如圖,過點A作AM∥GH交BC于M,
過點B作BN∥EF交CD于N,AM與BN交于點O′,
則四邊形AMHG和四邊形BNFE均為平行四邊形,
∴EF=BN,GH=AM,
∵∠FOH=90°,AM∥GH,EF∥BN,
∴∠NO′A=90°,
故由(1)得,△ABM≌△BCN,∴AM=BN,
∴GH=EF=4;
方法2:過點F作FM⊥AB于M,過點G作GN⊥BC于N,
得FM=GN,由(1)得,∠HGN=∠EFM,
得△FME≌△GNH,
得FE=GH=4.

(3)①∵是兩個正方形,則GH=2EF=8,②4n.
點評:本題利用了正方形的性質(zhì)、平行四邊形的判定、平行線的性質(zhì)、全等三角形的判定和性質(zhì)等知識,關(guān)鍵是作輔助線,構(gòu)造全等三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•紹興)(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,AE,BF交于點O,∠AOF=90°
求證:BE=CF.
(2)如圖2,在正方形ABCD中,點E,H,F(xiàn),G分別在邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°,EF=4.則GH的長為
4
4

(3)已知點E,H,F(xiàn),G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點O,
∠FOH=90°,EF=4直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個全等的正方形組成,則GH的長為
8
8


②如圖4,矩形ABCD由n個全等的正方形組成,則GH的長為
4n
4n
(用n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•紹興)如圖,設(shè)拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點為A,B,點A的坐標(biāo)是(2,4),點B的橫坐標(biāo)是-2.
(1)求a的值及點B的坐標(biāo);
(2)點D在線段AB上,過D作x軸的垂線,垂足為點H,在DH的右側(cè)作正三角形DHG.記過C2頂點M的直線為l,且l與x軸交于點N.
①若l過△DHG的頂點G,點D的坐標(biāo)為(1,2),求點N的橫坐標(biāo);
②若l與△DHG的邊DG相交,求點N的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2010•紹興)一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.
(1)根據(jù)圖中信息,求線段AB所在直線的函數(shù)解析式和甲乙兩地之間的距離;
(2)已知兩車相遇時快車比慢車多行駛40千米,若快車從甲地到達(dá)乙地所需時間為t時,求t的值;
(3)在(2)的條件下,若快車到達(dá)乙地后立刻返回甲地,慢車到達(dá)甲地后停止行駛,請你在圖中畫出快車從乙地返回到甲地過程中y關(guān)于x的函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省紹興市五校聯(lián)考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2010•紹興模擬)我們知道當(dāng)電壓一定時,電流與電阻成反比例函數(shù)關(guān)系.現(xiàn)有某學(xué)生利用一個最大電阻為200Ω的滑動變阻器及一電流表測電源電壓,結(jié)果如圖所示.
(1)電流I(安培)與電阻R(歐姆)之間的函數(shù)解析式為______;
(2)當(dāng)電阻在2Ω~200Ω之間時,電流應(yīng)在______范圍內(nèi),電流隨電阻的增大而______;
(3)若限制電流不超過20安培,則電阻在______之間.




查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•紹興)一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.
(1)根據(jù)圖中信息,求線段AB所在直線的函數(shù)解析式和甲乙兩地之間的距離;
(2)已知兩車相遇時快車比慢車多行駛40千米,若快車從甲地到達(dá)乙地所需時間為t時,求t的值;
(3)在(2)的條件下,若快車到達(dá)乙地后立刻返回甲地,慢車到達(dá)甲地后停止行駛,請你在圖中畫出快車從乙地返回到甲地過程中y關(guān)于x的函數(shù)的大致圖象.

查看答案和解析>>

同步練習(xí)冊答案