【題目】在梯形ABCD中, ADBC,AD=3,BC=7, B+C=90°,EF分別是邊AD、BC的中點,那么線段EF=_____

【答案】2

【解析】

首先過點EEMAB,ENCD,又由ADBC,即可得四邊形ABMEENCD是平行四邊形,易得MN的值與MF=NFMNF是直角三角形,然后根據(jù)直角三角形中,斜邊上的中線的長等于斜邊的一半,即可求得EF的長.

過點EEMAB,ENCD,


ADBC,
∴四邊形ABME,ENCD是平行四邊形,
BM=AE,CN=ED,EMAB,ENCD,
∴∠EMN=B,∠ENB=C
∵∠B+C=90°,
∴∠EMN+ENM=90°,
∴∠MEN=90°,
∵點EF分別是邊AD、BC的中點,
AE=ED=AD=,BF=CF=BC=,
MF=NF,MN=BC-AD=4
EF=MN=×4=2
故答案是:2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點、點表示的數(shù)分別為、,則、兩點之間的距離,線段的中點表示的數(shù)為.

(問題情境)

如圖,數(shù)軸上點表示的數(shù)為,點表示的數(shù)為8,點從點出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點從點出發(fā),以每秒2個單位長度的速度向左勻速運動,設運動時間為秒(.

(綜合運用)

1)填空:

、兩點之間的距離________,線段的中點表示的數(shù)為__________.

②用含的代數(shù)式表示:秒后,點表示的數(shù)為____________;點表示的數(shù)為___________.

③當_________時,兩點相遇,相遇點所表示的數(shù)為__________.

2)當為何值時,.

3)若點的中點,點的中點,點在運動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題滿分9分如圖,ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點分別為D,E,

1試判斷ABC的形狀,并說明理由;

2已知半圓的半徑為5,BC=12的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是直線AB上一點,OD平分∠BOC,∠COE90°.若∠AOC40°

1)求∠DOE的度數(shù);

2)圖中互為余角的角有 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1+2180°,∠A=∠C,AD平分∠BDF

(1)AEFC的位置關(guān)系如何?為什么?

(2)ADBC的位置關(guān)系如何?為什么?

(3)BC平分∠DBE?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,A=30°,AB=6cm,點D是線段AB上一動點,將線段CD繞點C逆時針旋轉(zhuǎn)50°CD′,連接BD′.設ADxcmBD′為ycm

小夏根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小夏的探究過程,請補充完整.

(1)通過取點、畫圖、測量,得到了的幾組值,如下表:

1

2

3

3.5

4

5

6

3.5

1.5

0.5

0.2

0.6

1.5

2.5

(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))

(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

(3)結(jié)合畫出的函數(shù)圖象,解決問題:當BD=BD'時,線段AD的長度約為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是線段上一點,,、兩點分別從出發(fā)以、的速度沿直線向左運動(在線段上,在線段上),運動的時間為

1)當時,,請求出的長;

2)當時,,請求出的長;

3)若運動到任一時刻時,總有,請求出的長;

4)在(3)的條件下,是直線上一點,且,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D△ABC的邊AB的延長線上一點,點F是邊BC上的一個動點(不與點B重合).以BD、BF為鄰邊作平行四邊形BDEF,又APBEAPBE,(點PE在直線AB的同側(cè)),如果BDAB,那么△PBC的面積與△ABC面積之比為( 。.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校新到一批理、化、生實驗器材需要整理,若實驗管理員李老師一人單獨整理需要40分鐘完成,現(xiàn)在李老師與工人王師傅共同整理20分鐘后,李老師因事外出,王師傅再單獨整理了20分鐘才完成任務.

(1)王師傅單獨整理這批實驗器材需要多少分鐘?

(2)學校要求王師傅的工作時間不能超過30分鐘,要完成整理這批器材,李老師至少要工作多少分鐘?

查看答案和解析>>

同步練習冊答案