(2009•西城區(qū)一模)有三個完全相同的小球,上面分別標(biāo)有數(shù)字1,-2,-3,將其放入一個不透明的盒子中搖勻,再從中隨機摸球兩次(第一次摸出球后放回搖勻),設(shè)第一次摸到的球上所標(biāo)的數(shù)字為m,第二次摸到的球上所標(biāo)的數(shù)字為n,依次以m、n作為點M的橫、縱坐標(biāo).
(1)用樹狀圖(或列表法)表示出點M(m,n)的坐標(biāo)所有可能的結(jié)果;
(2)求點M(m,n)在第三象限的概率.
【答案】分析:通過樹狀圖或列表,列舉出所有情況,再計算概率即可.
解答:解:(1)組成的點M(m,n)的坐標(biāo)的所有可能性為:

得到的各點為(1,1);(1,-2);(1,-3);(-2,1);(-2,-2);(-2,-3);(-3,1);(-3,-2);(-3,-3).
(2)落在第三象限的點有(-2,-2),(-2,-3),(-3,-2),(-3,-3),因此點M落在第三象限的概率為.(5分)
點評:用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.第三象限點的符號為(-,-).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷32(新灣初中 薛源海)(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點A在的圖象上,AB∥y軸,與的圖象交于點B,AC、BD與x軸平行,分別與的圖象交于點C、D.
(1)若點A的橫坐標(biāo)為2,求梯形ACBD的對角線的交點F的坐標(biāo);
(2)若點A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說明理由;
(3)若△ABC與以A、B、D為頂點的三角形相似,請直接寫出點A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市文瀾中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點A在的圖象上,AB∥y軸,與的圖象交于點B,AC、BD與x軸平行,分別與的圖象交于點C、D.
(1)若點A的橫坐標(biāo)為2,求梯形ACBD的對角線的交點F的坐標(biāo);
(2)若點A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說明理由;
(3)若△ABC與以A、B、D為頂點的三角形相似,請直接寫出點A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年吉林省琿春市琿春四中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點A在的圖象上,AB∥y軸,與的圖象交于點B,AC、BD與x軸平行,分別與的圖象交于點C、D.
(1)若點A的橫坐標(biāo)為2,求梯形ACBD的對角線的交點F的坐標(biāo);
(2)若點A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說明理由;
(3)若△ABC與以A、B、D為頂點的三角形相似,請直接寫出點A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省泰州市泰興市濟川實驗初中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點A在的圖象上,AB∥y軸,與的圖象交于點B,AC、BD與x軸平行,分別與,的圖象交于點C、D.
(1)若點A的橫坐標(biāo)為2,求梯形ACBD的對角線的交點F的坐標(biāo);
(2)若點A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說明理由;
(3)若△ABC與以A、B、D為頂點的三角形相似,請直接寫出點A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸的交點分別為A、B,將∠OBA對折,使點O的對應(yīng)點H落在直線AB上,折痕交x軸于點C.
(1)直接寫出點C的坐標(biāo),并求過A、B、C三點的拋物線的解析式;
(2)若拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四邊形?若存在,求出點P的坐標(biāo);若不存在,說明理由;
(3)設(shè)拋物線的對稱軸與直線BC的交點為T,Q為線段BT上一點,直接寫出|QA-QO|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案