在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED.
(1)求證:△BEC≌△DEC;
(2)延長BE交AD于F,當∠BED=120°時,求∠EFD的度數(shù).
【考點】正方形的性質(zhì);全等三角形的判定與性質(zhì).
【專題】計算題;證明題.
【分析】(1)在證明△BEC≌△DEC時,根據(jù)題意知,運用SAS公理就行;
(2)根據(jù)全等三角形的性質(zhì)知對應(yīng)角相等,即∠BEC=∠DEC=∠BED,又由對頂角相等、三角形的一個內(nèi)角的補角是另外兩個內(nèi)角的和求得∠EFD=∠BEC+∠CAD.
【解答】(1)證明:∵四邊形ABCD是正方形,
∴BC=CD,∠ECB=∠ECD=45°.
∴在△BEC與△DEC中,
∴△BEC≌△DEC(SAS).
(2)解:∵△BEC≌△DEC,
∴∠BEC=∠DEC=∠BED.
∵∠BED=120°,∴∠BEC=60°=∠AEF.
∴∠EFD=60°+45°=105°.
【點評】解答本題要充分利用正方形的特殊性質(zhì)、全等三角形的判定與性質(zhì)、以及對頂角相等等知識.
科目:初中數(shù)學 來源: 題型:
如圖,在▱ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)試說明:AB=CF;
(2)連接DE,若AD=2AB,試說明:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖是由幾個小立方塊所搭成的幾何體的俯視圖,小正方形中的數(shù)字表示在該位置小立方塊的個數(shù),則這個幾何體的左視圖為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某企業(yè)為一商場提供家電配件,從去年1至9月,該配件的原材料價格一路攀升,每件配件的原材料價格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
價格y1(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 |
隨著國家調(diào)控措施的出臺,原材料價格的漲勢趨緩,10至12月每件配件的原材料價格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢:
(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)若去年該配件每件的售價為100元,生產(chǎn)每件配件的人力成本為5元,其它成本3元,該配件在1至9月的銷售量p1(萬件)與月份x滿足函數(shù)關(guān)系式p1=0.1x+1.1(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬件)與月份x滿足函數(shù)關(guān)系式p2=﹣0.1x+2.9(10≤x≤12,且x取整數(shù)).求去年哪個月銷售該配件的利潤最大,并求出這個最大利潤;
(3)今年1月份,每件配件的原材料價格均比去年10月上漲8元,人力成本比去年增加1元,其它成本沒有變化,該企業(yè)將每件配件的售價在去年的基礎(chǔ)上提高a%,與此同時每月銷售量均在去年12月的基礎(chǔ)上減少8a%.這樣,該月完成了17萬元利潤的任務(wù),請你計算出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
小明騎自行車上學,開始以正常速度勻速行駛,但行至中途時,自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程s(m)關(guān)于時間t(min)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
一項“過關(guān)游戲”規(guī)定:在過第n關(guān)時要將一顆質(zhì)地均勻的骰子(六個面上分別刻有1到6的點數(shù))拋擲n次,若n次拋擲所出現(xiàn)的點數(shù)之和大于n2,則算過關(guān);否則不算過關(guān),則能過第二關(guān)的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com