【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點E,F(xiàn),G,若∠ABC=30°,∠C=45°,ED=,點H是BD上的一個動點,則HG+HC的最小值為______________.
【答案】
【解析】
首先證明四邊形BEDG是菱形,作EM⊥BC于M,DN⊥BC于N,連接EC交BD于點H,此時HG+HC最小,在Rt△EMC中,求出EM、MC即可解決問題.
解:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
∴△EFD≌△GFB(AAS)
∴ED=BG,
∴BE=ED=DG=GB,
∴四邊形EBGD是菱形.
如圖,作EM⊥BC于M,DN⊥BC于N,連接EC交BD于點H,此時HG+HC最小
在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2 ,
∴EM=BE=,
∵DE∥BC,EM⊥BC,DN⊥BC,
∴EM∥DN,EM=DN=,MN=DE=2,
在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,
∴∠NDC=∠NCD=45°,
∴DN=NC=,
∴MC=3,
在Rt△EMC中,∵∠EMC=90°,EM=.MC=3,
∴EC==5.
∵HG+HC=EH+HC=EC,
∴HG+HC的最小值為5.
故答案為5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON60°,點A是OM邊上一點,點B,C是ON邊上兩點,且ABAC,作點B關(guān)于OM的對稱點點D,連接AD,CD,OD.
(1)依題意補全圖形;
(2)猜想∠DAC °,并證明;
(3)猜想線段OA、OD、OC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:①四個角都相等的四邊形是矩形;②有一組對邊平行,有兩個角為直角的四邊形是矩形;③兩組對邊分別相等且有一個角為直角的四邊形是矩形;④對角線相等且有一個角是直角的四邊形是矩形;⑤對角線互相平分且相等的四邊形是矩形.其中,正確的個數(shù)是( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓(xùn)練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:
(1)該班總?cè)藬?shù)是 ;
(2)根據(jù)計算,請你補全兩個統(tǒng)計圖;
(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表.設(shè)分配給甲店A型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤為W(元).
(1)求W關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;
(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案?
(3)實際銷售過程中,公司發(fā)現(xiàn)這批產(chǎn)品尤其是A型產(chǎn)品很暢銷,便決定對甲店的最后21件A型產(chǎn)品每件提價元銷售(為正整數(shù)).兩店全部銷售完畢后結(jié)果的總利潤為18000元,求 值.并寫出公司這100件產(chǎn)品對甲乙兩店是如何分配的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.
(1)求一次函數(shù)的表達式;
(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過對《勾股定理》的學(xué)習(xí),我們知道:如果一個三角形中,兩邊的平方和等于第三邊的平方,那么這個三角形一定是直角三角形.如果我們新定義一種三角形——兩邊的平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
(1)根據(jù)奇異三角形的定義,請你判斷:等邊三角形一定是奇異三角形嗎?
(填“是”或不是);
(2)若某三角形的三邊長分別為1、、2,則該三角形是不是奇異三角形,請做出判斷并寫出判斷依據(jù);
(3)在中,兩邊長分別為,且且,則這個三角形是不是奇異三角形?請做出判斷并寫出判斷依據(jù);
探究:Rt中,,且b>a,若Rt是奇異三角形,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程k2x2﹣2(k+1)x+1=0有兩個實數(shù)根.
(1)求k的取值范圍;
(2)當k=1時,設(shè)所給方程的兩個根分別為x1和x2,求(x1﹣2)(x2﹣2)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com