【題目】定義:如圖①,點M、N把線段AB分割成AM、MN和BN,若以AM,MN、BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.
(1)已知點M、N是線段AB的勾股分割點,若AM=2,MN=3,求BN的長;
(2)如圖2,在Rt△ABC中,AC=BC,點M,N在斜邊AB上,∠MCN=45°,求證:點M,N是線段AB的勾股分割點(提示:把△ACM繞點C逆時針旋轉(zhuǎn)90°)
(3)在(2)的前提下,若∠BCN=15°,BN=1.求AN的長.
【答案】(1)或;(2)見解析;(3)2+
【解析】
(1)分兩種情況討論,根據(jù)勾股分割點定義可求BN的長;
(2)過點A作AD⊥AB,且AD=BN,由題意可證△ADC≌△BNC,可得CD=CN,∠ACD=∠BCN,可求∠MCD=∠MCN,則可證△MDC≌△MNC,可得MN=DM,根據(jù)勾股定理可得BN2+AM2=MN2,則點M,N是線段AB的勾股分割點;
(3)過點C作CD⊥AB,垂足為D,根據(jù)等腰直角三角形的性質(zhì)可得AD=CD=BD,∠DBC=∠DCB=45°,可求∠DCN=∠DCB﹣∠NCB=30°,可得CD=DN=BD,即可求DN=,則可求AN的長.
(1)分兩種情況:
①當(dāng)MN為最大線段時,
∵點 M、N是線段AB的勾股分割點,
∴BN=,
②當(dāng)BN為最大線段時,
∵點M、N是線段AB的勾股分割點,
∴BN=,
綜上所述:BN的長為或;
(2)如圖,過點A作AD⊥AB,且AD=BN,
∵AD=BN,∠DAC=∠B=45°,AC=BC,
∴△ADC≌△BNC(SAS),
∴CD=CN,∠ACD=∠BCN,
∵∠MCN=45°,
∴∠DCA+∠ACM=∠ACM+∠BCN=45°,
∴∠MCD=∠MCN,且CD=CN,CM=CM,
∴△MDC≌△MNC(SAS),
∴MN=DM,
在Rt△MDA中,AD2+AM2=DM2,
∴BN2+AM2=MN2,
∴點M,N是線段AB的勾股分割點;
(3)如圖,過點C作CD⊥AB,垂足為D,
∵AC=BC,∠ACB=90°,CD⊥AB,
∴AD=CD=BD,∠DBC=∠DCB=45°,
∵∠BCN=15°,
∴∠DCN=∠DCB﹣∠NCB=30°,
∵tan∠DCN=,
∴CD=DN,
∴DB=DN,
∵NB=DB﹣DN=DN﹣DN=1,
∴DN=,
∴AD=DB=DN=,
∴AN=AD+DN==2+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中, ∠ACB=90°,∠CAB=30°,以AC,AB為邊向外作等邊三角形ACD和等邊三角形ABE,點F在AB上,且到AE,BE的距離相等.
(1)用尺規(guī)作出點F; (要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)連接EF,DF,證明四邊形ADFE為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,在一節(jié)40分鐘的課中,學(xué)生的注意力指數(shù)y隨時間x(分)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).
(1)分別求出線段AB和雙曲線CD的函數(shù)解析式,并寫出自變量的取值范圍;
(2)開始上課后第5分鐘時與第30分鐘時比較,何時學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)競賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指數(shù)至少為36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達到所需的狀態(tài)下講解完這道題目?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在圖中作出△ABC關(guān)于m(直線m上的橫坐標(biāo)都為﹣2)的對稱圖形△A1B1C1;
(2)線段上有一點P(﹣,),直接寫出點P關(guān)于直線m對稱的點的坐標(biāo) .
(3)線段BC上有一點M(a,b),點M關(guān)于直線m的對稱點N(c,d),請直接寫出a,c的關(guān)系: ;b,d的關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、E和B、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )
A. 80° B. 90° C. 100° D. 108°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)軸對稱的時候,老師讓同學(xué)們思考課本中的探究題.
如圖(1),要在燃氣管道l上修建一個泵站,分別向A、B兩鎮(zhèn)供氣.泵站修在管道的什么地方,可使所用的輸氣管線最短?
你可以在l上找?guī)讉點試一試,能發(fā)現(xiàn)什么規(guī)律?你可以在上找?guī)讉點試一試,能發(fā)現(xiàn)什么規(guī)律?
聰明的小華通過獨立思考,很快得出了解決這個問題的正確辦法.他把管道l看成一條直線(圖(2)),問題就轉(zhuǎn)化為,要在直線l上找一點P,使AP與BP的和最。淖龇ㄊ沁@樣的:
①作點B關(guān)于直線l的對稱點B′.
②連接AB′交直線l于點P,則點P為所求.
請你參考小華的做法解決下列問題.如圖在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使△PDE得周長最。
(1)在圖中作出點P(保留作圖痕跡,不寫作法).
(2)請直接寫出△PDE周長的最小值:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的頂點在坐標(biāo)原點,正方形的邊與在同一直線上, 與在同一直線上,且,邊和邊所在直線的解析式分別為: 和,則點的坐標(biāo)是( )
A.(6,-1)B.(7,-1)C.(7,-2)D.(6,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年“雙十一”期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務(wù);若單獨租用乙種車輛,完成任務(wù)的天數(shù)是單獨租用甲種車輛完成任務(wù)天數(shù)的2倍.
(1)求甲、乙兩種車輛單獨完成任務(wù)分別需要多少天?
(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com