【題目】如圖,在坡頂B處的同一水平面上有一座紀(jì)念碑CD垂直于水平面,小明在斜坡底A處測(cè)得該紀(jì)念碑頂部D的仰角為45°,然后他沿著坡比i=5:12的斜坡AB攀行了39米到達(dá)坡頂,在坡頂B處又測(cè)得該紀(jì)念碑頂部的仰角為68°.求坡頂B到地面AE的距離和紀(jì)念碑CD的高度.(結(jié)果精確到1米,參考數(shù)據(jù):sin68°=0.9,cos68°=0.4,tan68°=2.5)

【答案】解:過(guò)點(diǎn)B作BG⊥AE,垂足為點(diǎn)G,如圖.
∵i=tan∠BAG= =5:12,
∴設(shè)BG=5k,則AG=12k,
在Rt△BAG中,由勾股定理得,AB=13k,
∴13k=39,解得k=3,
∴BG=15,
∴坡頂B到AE的距離為15米.
延長(zhǎng)DC交AE于點(diǎn)F,
∵BC⊥DC,BC∥AE,
∴DF⊥AE,
∴四邊形BCFG是矩形,CF=BG=15,BC=GF,
∵∠DAF=45°,
∴AF=DF,
設(shè)DC=x,則AF=36+GF,DF=x+15,即x+15=35+GF,
∴BC=GF=x﹣21,
在Rt△DBC中,tan∠DBC= ,即 ≈2.5,
解得x≈35,
答:坡頂B到地面AE的距離為15米,紀(jì)念碑CD的高度約為35米.

【解析】過(guò)點(diǎn)B作BG⊥AE,垂足為點(diǎn)G,如圖.根據(jù)已知條件得到設(shè)BG=5k,則AG=12k,在Rt△BAG中,由勾股定理得,AB=13k,得到BG=15,于是得到坡頂B到AE的距離為15米.延長(zhǎng)DC交AE于點(diǎn)F,根據(jù)平行線(xiàn)的性質(zhì)得到DF⊥AE,根據(jù)矩形的性質(zhì)得到AF=DF,設(shè)DC=x,則AF=36+GF,DF=x+15,得到BC=GF=x﹣21,根據(jù)三角函數(shù)的定義即可得到結(jié)論.
【考點(diǎn)精析】本題主要考查了關(guān)于坡度坡角問(wèn)題和關(guān)于仰角俯角問(wèn)題的相關(guān)知識(shí)點(diǎn),需要掌握坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA;仰角:視線(xiàn)在水平線(xiàn)上方的角;俯角:視線(xiàn)在水平線(xiàn)下方的角才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下面兩個(gè)定理:

線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;

到一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線(xiàn)段的垂直平分線(xiàn)上.

應(yīng)用上述定理進(jìn)行如下推理:

如圖,直線(xiàn)l是線(xiàn)段MN的垂直平分線(xiàn).

點(diǎn)A在直線(xiàn)l,AM=AN.(  )

BM=BN,點(diǎn)B在直線(xiàn)l.(  )

CMCN,點(diǎn)C不在直線(xiàn)l.

這是如果點(diǎn)C在直線(xiàn)l,那么CM=CN, (  )

這與條件CMCN矛盾.

以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是 (  )

A. ②①① B. ②①②

C. ①②② D. ①②①

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年我區(qū)的葡萄喜獲豐收,葡萄一上市,水果店的王老板用2400元購(gòu)進(jìn)一批葡萄,很快售完;老板又用5000元購(gòu)進(jìn)第二批葡萄,所購(gòu)件數(shù)是第一批的2倍,但進(jìn)價(jià)比第一批每件多了5元.

(1)第一批葡萄每件進(jìn)價(jià)多少元?

(2)王老板以每件150元的價(jià)格銷(xiāo)售第二批葡萄,售出80%后,為了盡快售完,決定打折促銷(xiāo),要使第二批葡萄的銷(xiāo)售利潤(rùn)不少于640元,剩余的葡萄每件售價(jià)最少打幾折?(利潤(rùn)=售價(jià)-進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,BC=4,以頂點(diǎn)A,B為圓心,以AD、BC長(zhǎng)為半徑作兩條弧,兩弧相切于點(diǎn)E,且E在AB上,以AB為直徑作半圓恰好與DC相切,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織七年級(jí)全體學(xué)生舉行了漢字聽(tīng)寫(xiě)比賽,每位學(xué)生聽(tīng)寫(xiě)漢字39個(gè),隨機(jī)抽取了部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,繪制成如下的圖表.

組別

正確字?jǐn)?shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根據(jù)以上信息完成下列問(wèn)題:

(1)由統(tǒng)計(jì)表可知m+n=   ,并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)扇形統(tǒng)計(jì)圖中“C所對(duì)應(yīng)的圓心角的度數(shù)是   

(3)已知該校七年級(jí)共有900名學(xué)生,如果聽(tīng)寫(xiě)正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)該年級(jí)本次聽(tīng)寫(xiě)比賽不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)江是我們的母親河,金港新區(qū)為了打造沿江風(fēng)景,吸引游客搞活經(jīng)濟(jì),將一段長(zhǎng)為180米的沿江河道整治任務(wù)交由AB兩工程隊(duì)先后接力完成.A工作隊(duì)每天整治12米,B工程隊(duì)每天整治8米,共用時(shí)20天.求A、B兩工程隊(duì)分別整治河道多少米?

⑴根據(jù)題意,七⑴班甲同學(xué)列出尚不完整的方程組如下。根據(jù)甲同學(xué)所列的方程組,請(qǐng)你分別指出未知數(shù)x、y表示的意義,然后在方框中補(bǔ)全甲同學(xué)所列的方程組;

,x表示________________________y表示_________________________;

⑵如果乙同學(xué)直接設(shè)A工程隊(duì)整治河道的米數(shù)為x,B工程隊(duì)整治河道的米數(shù)為y,列出了一個(gè)方程組,求AB兩工程隊(duì)分別整治河道多少米.請(qǐng)你幫助他寫(xiě)出完整的解答過(guò)程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,若點(diǎn)P(x,y)的坐標(biāo)x、y均為整數(shù),則稱(chēng)點(diǎn)P為格點(diǎn),若一個(gè)多邊形的面積記為S,其內(nèi)部的格點(diǎn)數(shù)記為N,邊界上的格點(diǎn)數(shù)記為L,例如圖中△ABC是格點(diǎn)三角形,對(duì)應(yīng)的S=1,N=0,L=4.

(1)求出圖中格點(diǎn)四邊形DEFG對(duì)應(yīng)的S,N,L

(2)已知格點(diǎn)多邊形的面積可表示為S=N+aL+b,其中a,b為常數(shù),若某格點(diǎn)多邊形對(duì)應(yīng)的N=82,L=38,求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:四條邊都相等且四個(gè)角都是直角的四邊形叫做正方形。我校快樂(lè)走班數(shù)學(xué)興趣小組開(kāi)展了一次課外活動(dòng),過(guò)程如下:如圖①,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合.三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長(zhǎng)線(xiàn)于點(diǎn)Q.

(1)求證:DP=DQ;

(2)如圖②,小明在圖1的基礎(chǔ)上作∠PDQ的平分線(xiàn)DEBC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PEQE存在一定的數(shù)量關(guān)系,請(qǐng)猜測(cè)他的結(jié)論并予以證明;

(3)如圖③,固定三角板直角頂點(diǎn)在D點(diǎn)不動(dòng),轉(zhuǎn)動(dòng)三角板,使三角板的一邊交AB的延長(zhǎng)線(xiàn)于點(diǎn)P,另一邊交BC的延長(zhǎng)線(xiàn)于點(diǎn)Q,仍作∠PDQ的平分線(xiàn)DEBC延長(zhǎng)線(xiàn)于點(diǎn)E,連接PE,若AB:AP=3:4,請(qǐng)幫小明算出DEP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,CE、BE的交點(diǎn)為E,現(xiàn)作如下操作:

第一次操作,分別作∠ABE和∠DCE的平分線(xiàn),交點(diǎn)為E1,

第二次操作,分別作∠ABE1和∠DCE1的平分線(xiàn),交點(diǎn)為E2,

第三次操作,分別作∠ABE2和∠DCE2的平分線(xiàn),交點(diǎn)為E3,…,

n次操作,分別作∠ABEn1和∠DCEn1的平分線(xiàn),交點(diǎn)為En.

(1)如圖①,求證:∠BEC=ABE+DCE;

(2)如圖②,求證:∠BE2C=BEC;

(3)猜想:若∠En度,那∠BEC等于多少度?(直接寫(xiě)出結(jié)論).

查看答案和解析>>

同步練習(xí)冊(cè)答案