【題目】如圖,拋物線y=-x2mx的對稱軸為直線x=2,若關于x的一元二次方程-x2mxt=01<x<5的范圍內(nèi)有解,則t的取值范圍是( )

A. t>-5 B. -5<t<3 C. -5<t≤4 D. 3<t≤4

【答案】C

【解析】分析:由對稱軸為x=2,求出m的值,根據(jù)在1<x<5的范圍內(nèi)拋物線y=-x2+4x與直線yt有交點求t的范圍.

詳解:因為,所以m=4,則一元二次方程為-x2+4xt=0.

即在1<x<5的范圍內(nèi)拋物線y=-x2+4x與直線yt有交點.

①當x=2時,y=-22+2×4=4,所以t≤4;

②當x=5時,y=-52+5×4=-5,所以t>-5;

∴-5<x≤4.

所以t的范圍是-5<t≤4.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某日的錢塘江觀潮信息如圖:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離s(千米)與時間t(分鐘)的函數(shù)關系用圖3表示,其中:“11:40時甲地交叉潮的潮頭離乙地12千米記為點A(0,12),點B坐標為(m,0),曲線BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫.

(1)求m的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為0.48千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在今年我市初中學業(yè)水平考試體育學科的女子800米耐力測試中,某考點同時起跑的小瑩和小梅所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,下列說法正確的是( )

A. 小瑩的速度隨時間的增大而增大B. 小梅的平均速度比小瑩的平均速度大

C. 在起跑后180秒時,兩人相遇D. 在起跑后50秒時,小梅在小瑩的前面

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠B=90°AB=8cm,BC=6cm,P、QABC邊上的兩個動點,其中P點從點A開始沿AB方向運動且速度為每秒lcm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t.

(1)出發(fā)2秒后,求線段PQ的長?

(2)當點Q在邊BC上運動時,出發(fā)兒秒鐘后,OPQB是等腰三角形?

(3)當點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】14分)定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.

如圖,已知ABC中,AB=BC,C=36°,BA1平分ABC交AC于A1

(1)=AA1A C;

(2)探究:ABC是否為黃金等腰三角形?請說明理由;(提示:此處不妨設AC=1)

(3)應用:已知AC=a,作A1B1AB交BC于B1,B1A2平分A1B1C交AC于A2,作A2B2AB交B2,B2A3平分A2B2C交AC于A3,作A3B3AB交BC于B3,…,依此規(guī)律操作下去,用含a,n的代數(shù)式表示An﹣1An.(n為大于1的整數(shù),直接回答,不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數(shù)互為相反數(shù).

1)填空:a   ,b   c   ;

2)先化簡,再求值:5a2b[2a2b32abca2b]+4abc

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yk1xb的圖象與反比例函數(shù)y (x<0)的圖象相交于點A(-1,2)、點B(-4,n).

(1)求此一次函數(shù)和反比例函數(shù)的表達式;

(2)AOB的面積;

(3)x軸上存在一點P,使PAB的周長最小,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由一些棱長為單位1的相同小正方體組合成的簡單幾何體.

1)圖中有 塊小正方體;

2)請在下面方格紙中分別畫出幾何體的主視圖、左視圖和俯視圖.

3)如果在其表面涂漆,則要涂 平方單位.(幾何體放在地上,底面無法涂上漆)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

同步練習冊答案