某調(diào)查小組采用簡單隨機抽樣方法,對某市部分中小學(xué)生一天中陽光體育運動時間進(jìn)行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:
⑴該調(diào)查小組抽取的樣本容量是多少?
⑵求樣本學(xué)生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;
⑶請估計該市中小學(xué)生一天中陽光體育運動的平均時間.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點E,交BD于點F,連接CF.若∠A=60°,∠ABD=24°,則∠ACF的度數(shù)為( 。
| A. | 48° | B. | 36° | C. | 30° | D. | 24° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
太陽的半徑約為696000km,把696000這個數(shù)用科學(xué)記數(shù)法表示為_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)家歌德巴赫通過研究下面一系列等式,作出了一個著名的猜想.
4=2+2; 12=5+7;
6=3+3; 14=3+11=7+7;
8=3+5; 16=3+13=5+11;
10=3+7=5+5 18=5+13=7+11;
…
通過這組等式,你發(fā)現(xiàn)的規(guī)律是_______________________________________(請用文字語言表達(dá)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
設(shè)ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.
⑴閱讀填空
如圖①,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.
理由:連接AH,EH.
∵ AE為直徑 ∴ ∠AHE=90° ∴ ∠HAE+∠HEA=90°.
∵ DH⊥AE ∴ ∠ADH=∠EDH=90°
∴ ∠HAD+∠AHD=90°
∴ ∠AHD=∠HED ∴ △ADH∽_____________.
∴ ,即=AD×DE.
又∵ DE=DC ∴ =____________,即正方形DFGH與矩形ABCD等積.
⑵操作實踐
平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.
如圖②,請用尺規(guī)作圖作出與□ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).
⑶解決問題
三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的_________________(填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.
如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).
⑷拓展探究
n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n-1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.
如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列四個命題中,真命題是( )
| A. | “任意四邊形內(nèi)角和為360°”是不可能事件 |
| B. | “湘潭市明天會下雨”是必然事件 |
| C. | “預(yù)計本題的正確率是95%”表示100位考生中一定有95人做對 |
| D. | 拋擲一枚質(zhì)地均勻的硬幣,正面朝上的概率是 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點C落在斜邊AB上的點E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正確結(jié)論的個數(shù)是( 。
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com