如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x+12的圖象分別交x軸,y軸于A,B兩點(diǎn)過點(diǎn)A的直線交y軸正半軸與點(diǎn)M,且點(diǎn)M為線段OB的中點(diǎn).
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點(diǎn)P,使得S△ABP=S△AOB,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A,B,M,H為頂點(diǎn)的四邊形是等腰梯形?若存在,請(qǐng)直接寫出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)通過函數(shù)y=2x+12求出A、M兩點(diǎn)坐標(biāo),由兩點(diǎn)坐標(biāo)求出直線AM的函數(shù)解析式;
(2)設(shè)出P點(diǎn)坐標(biāo),按照等量關(guān)系“×|AP|×B到直線AM的距離=S△AOB”即可求出;
(3)判斷能否構(gòu)成等腰梯形,主要看兩腰能否等腰,本題應(yīng)分別把AB、AM、BM看作底來判斷.
解答:解:(1)∵直線AB的函數(shù)解析式y(tǒng)=2x+12,
∴A(-6,0),B(0,12).
又∵M(jìn)為線段OB的中點(diǎn),
∴M(0,6).
∴直線AM的解析式y(tǒng)=x+6;

(2)設(shè)P點(diǎn)坐標(biāo)(x,x+6),則|AP|=|x+6|,B到直線AM的距離d=,
,
解得:x=6或-18.
∴P(6,12)或P(-18,-12);

(3)存在這樣的點(diǎn)H,使以A,B,M,H為頂點(diǎn)的四邊形是等腰梯形.
若以AM為底,BM為腰,過點(diǎn)B作AM的平行線,當(dāng)點(diǎn)H的坐標(biāo)為(-12,0)時(shí),以A,B,M,H為頂點(diǎn)的四邊形是等腰梯形;
若以BM為底,AM為腰,過點(diǎn)A作BM的平行線,當(dāng)點(diǎn)H的坐標(biāo)為(-6,18)時(shí),以A,B,M,H為頂點(diǎn)的四邊形是等腰梯形;
若以AB為底,BM為腰,過點(diǎn)M作AB的平行線,當(dāng)點(diǎn)H的坐標(biāo)為(-,)時(shí),以A,B,M,H為頂點(diǎn)的四邊形是等腰梯形.
故所求點(diǎn)H的坐標(biāo)為(-12,0)或(-6,18)或(-,).
點(diǎn)評(píng):本題為一次函數(shù)綜合類的題,需掌握由函數(shù)圖象求點(diǎn)的坐標(biāo),能夠計(jì)算點(diǎn)到直線的距離.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案